Visible Dependent
Quantification

Ryan Scott
Indiana University {JJ

Haskell Implementors Workshop
23 August 2019
Berlin, Germany

VDQ

Ryan Scott
Indiana University {JJ

Haskell Implementors Workshop
23 August 2019
Berlin, Germany

The origins of VDQ

Syntax for visible dependent quantification #81

I““ Merged nomeata ITIEI'QEd 6 commits into ghc-proposals:master from goldfirere:forall-arrow @. on Sep 30, 2018

(&J Conversation 44 O- Commits 6 &, Checks 0 Files changed 1
l‘ goldfirere commented on Oct 13, 2017 - edited by nomeata ~ Contributor

The proposal has been accepted; the following discussion is mostly of historic interest.

This proposes a concrete syntax for a kind that has existed since GHC 8.0, but cannot currently be parsed.

Rendered

a kind that has existed since GHC 8.0, but cannot currently be parsed.

data Bool where
False :: Bool
True :: Bool

data Bool where
False :: Bool
True :: Bool

data Bool :: * where

data Bool where
False :: Bool
True :: Bool

data Bool :: Type where

data Maybe a where
Nothing :: Maybe a
Just .. a -> Maybe a

data Maybe a where
Nothing :: Maybe a
Just .. a -> Maybe a

data Maybe :: Type -> Type where

data Proxy (a :: k) where
MkProxy :: Proxy a

data Proxy (a :: k) where
MkProxy :: Proxy a

data Proxy :: k -> Type where

data Proxy (a :: k) where
MkProxy :: Proxy a

data Proxy :: forall k. k -> Type where

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

data ProxyExp :: ??7? where

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type

A> data ProxyExp :: forall k -> k -> Type

data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type

A> data ProxyExp :: forall k -> k -> Type

<interactive>:11:27: error: parse error on
input ‘->’

What is this

forall k ->
thing, anyway?

Visible Dependent
Quantification

Visible

Visible

The argument must be written in the source code.

Visible

The argument must be written in the source code.

Maybe
.. Type -> Type

Visible

The argument must be written in the source code.

Maybe
.. Type -> Type

Maybe Int

Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int

Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int Proxy Int

Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int Proxy @Type Int

Visible Dependent
Quantification

Dependent

Dependent

The body of the kind changes depending on its type.

Dependent

The body of the kind changes depending on its type.

Proxy

.. forall k. k -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy

.. forall k. k -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @Type :: Type -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @() :: () -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @Bool :: Bool -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

) ¢

Proxy @Bool :: Bool -> Type

v

Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Int :: Type

Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Char :: Type

Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Bool :: Type

Visible Dependent
Quantification

Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

Visible
Quantification

data ProxyExp :: forall k -> k -> Type

Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Bool

Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Bool :: Bool -> Type

Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Type :: Type -> Type

Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp () O -> Type

Why do | want this?

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro

Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro

Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k —-> Type
data T m a =
MkT (m a) (T Maybe (m a))

Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k —-> Type
data T m a =
MkT (m a) (T Maybe (m a))

data T2 km (a :: k) =
MkT2 (m a) (T2 Type Maybe (m a))

Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k -> Type
data T m a =
MKT (m a) (T Maybe (m a))

type T2 :: forall k -> (k -> Type) -> k -> Type
data T2 km (a :: k) =
MkT2 (m a) (T2 Type Maybe (m a))

Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro

Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a

Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a

T :: Type -> Type -- 0ld kind

Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a

T :: Type -> Type -- 0ld kind
T :: forall (a :: Type) -> C a => Type
-- New kind

Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro

Dependent Haskell?

someone probably wants to merge 23 com||

i0
.
“
.
.
~
.
.
“
.

.
L 2

Syntax for visible dependent quantification

oy Gl nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro

$: V {A : Set} {B : Set} -
(A - B) -
(A - B)

f $x=1x

$: V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)

f$x =1 x

$: V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)

f$x =1 x

type ($) :: forall (a :: Type) (b :: a -> Type).
(forall (x :: a) -> b x) ->
(forall (x :: a) -> b x)

type f $ x = f x

$: V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)
f$x =1 x
{-# LANGUAGE UnicodeSyntax #-}
type ($) =V (a i Type) (b it a - Type).
(V (x i a) - b x) -
(V (x = a) - b x)
type f $ x = f x

Implementing VDQ

»s Glasgow Haskell Compiler > s« GHC > Commits > ¢26d299d
Dec 18, 2018 1:54am

Commit ¢26d299d (® authored 7 months ago by @ Ryan Scott Committed by Marge Bot 4 months ago ® 2

Visible dependent quantification

This implements GHC proposal 35
(https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0035-forall-arrow.rst)
by adding the ability to write kinds with

visible dependent quantification (VDQ).

»s Glasgow Haskell Compiler > s« GHC > Commits > ¢26d299d
Dec 18, 2018 1:54am

Commit ¢26d299d (® authored 7 months ago by @ Ryan Scott Committed by Marge Bot 4 months ago

Visible dependent quantification

This implements
(https://github.
by adding the ab

visible dependentT

Showing 64 changed files ¥ with 814 additions and 149 deletions

Arrow. rst)

quditLLT Leallull (VU) .

data T (a :: Type) :: Type

data T (a :: Type) :: Type

T :: Type -> Type

data T (a :: Type) :: Type

T :: Type -> Type
T :: forall (a :: Type) -> Type

data T (a :: Type) :: Type

vT Type -> Type
T :: forall (a :: Type) -> Type

data T (a :: Type) :: Type

VT :: Type -> Type
T :Ziﬁgrall (a :: Type) -> Type

These two kinds are not equivalent (currently)

type The :: forall a -> a -> a

the :: forall a -> a -> a

J type The :: forall a -> a -> a

X the :: forall a -> a -> a

J type The :: forall a -> a -> a

x the :: forall a -> a -> a

A> the :: forall a -> a -> a

J type The :: forall a -> a -> a

x the :: forall a -> a -> a

A> the :: forall a -> a -> a

<interactive>:7:8: error:
- Illegal visible, dependent
quantification in the type of a term:
forall a -> a -> a
(GHC does not yet support this)

VDQ

* Fills in a gaping hole in GHC's kind language
* An important step towards dependent types in Haskell
« Amaze your friends, impress your coworkers, wow!

Debuts in GHC 8.10!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

