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The origins of VDQ



Syntax for visible dependent quantification #81

I““ Merged nomeata ITIEI'QEd 6 commits into ghc-proposals:master from goldfirere:forall-arrow @. on Sep 30, 2018

(&J Conversation 44 O- Commits 6 &, Checks 0 Files changed 1
l‘ goldfirere commented on Oct 13, 2017 - edited by nomeata ~ Contributor

The proposal has been accepted; the following discussion is mostly of historic interest.

This proposes a concrete syntax for a kind that has existed since GHC 8.0, but cannot currently be parsed.

Rendered



a kind that has existed since GHC 8.0, but cannot currently be parsed.




data Bool where
False :: Bool
True :: Bool



data Bool where
False :: Bool
True :: Bool

data Bool :: * where



data Bool where
False :: Bool
True :: Bool

data Bool :: Type where



data Maybe a where
Nothing :: Maybe a
Just .. a -> Maybe a



data Maybe a where
Nothing :: Maybe a
Just .. a -> Maybe a

data Maybe :: Type -> Type where



data Proxy (a :: k) where
MkProxy :: Proxy a



data Proxy (a :: k) where
MkProxy :: Proxy a

data Proxy :: k -> Type where



data Proxy (a :: k) where
MkProxy :: Proxy a

data Proxy :: forall k. k -> Type where



data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::




data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

data ProxyExp :: ??7? where



data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::




data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp




data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type




data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type

A> data ProxyExp :: forall k -> k -> Type




data ProxyExp k (a :: k) where
MkProxyExp :: ProxyExp k (a ::

$ ghci
A> :kind ProxyExp
ProxyExp :: forall k -> k -> Type

A> data ProxyExp :: forall k -> k -> Type

<interactive>:11:27: error: parse error on
input ‘->’




What is this

forall k ->
thing, anyway?
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Visible



Visible

The argument must be written in the source code.




Visible

The argument must be written in the source code.

Maybe
.. Type -> Type




Visible

The argument must be written in the source code.

Maybe
.. Type -> Type

Maybe Int




Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int




Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int Proxy Int




Visible

The argument must be written in the source code.

Maybe Proxy
.. Type -> Type .. forall k. k -> Type

Maybe Int Proxy @Type Int
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Dependent



Dependent

The body of the kind changes depending on its type.




Dependent

The body of the kind changes depending on its type.

Proxy

.. forall k. k -> Type

v



Dependent

The body of the kind changes depending on its type.

Proxy

.. forall k. k -> Type

v



Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @Type :: Type -> Type

v




Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @() :: () -> Type

v




Dependent

The body of the kind changes depending on its type.

Proxy
.. forall k. k -> Type

Proxy @Bool :: Bool -> Type

v




Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

) ¢

Proxy @Bool :: Bool -> Type

v




Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Int :: Type




Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Char :: Type




Dependent

The body of the kind changes depending on its type.

Proxy Maybe
.. forall k. k -> Type .. Type -> Type

Proxy @Bool :: Bool -> Type | Maybe Bool :: Type
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Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type




Visible
Quantification

data ProxyExp :: forall k -> k -> Type




Dependent
Quantification

data ProxyExp :: forall k -> k -> Type




Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Bool



Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Bool :: Bool -> Type



Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp Type :: Type -> Type



Visible Dependent
Quantification

data ProxyExp :: forall k -> k -> Type

ProxyExp () O -> Type



Why do | want this?



Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro




Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro




Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg




Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k —-> Type
data T m a =
MkT (m a) (T Maybe (m a))



Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k —-> Type
data T m a =
MkT (m a) (T Maybe (m a))

data T2 km (a :: k) =
MkT2 (m a) (T2 Type Maybe (m a))



Top-level kind signatures

o - nomeata merged 6 commits into ghc-propg

type T :: (k -> Type) -> k -> Type
data T m a =
MKT (m a) (T Maybe (m a))

type T2 :: forall k -> (k -> Type) -> k -> Type
data T2 km (a :: k) =
MkT2 (m a) (T2 Type Maybe (m a))



Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro




Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste




Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a



Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a

T :: Type -> Type -- 0ld kind



Simple constrained type families

typedrat wants to merge 23 commits into ghc-proposals:maste

class C a where
type T a

T :: Type -> Type -- 0ld kind
T :: forall (a :: Type) -> C a => Type
-- New kind



Top-level kind signatures Simple constrained type families
nomeata merged 6 commits into ghc-propo typedrat wants to merge 23 commits into ghc-proposals:maste

Syntax for visible dependent quantification

E"" Merged nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro




Dependent Haskell?

someone probably wants to merge 23 com||

i0
.
“
.
.
~
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.
“
.

.
L 2

Syntax for visible dependent quantification

oy Gl nomeata merged 6 commits into ghc-proposals:master from goldfirere:forall-arro




_$_: V {A : Set} {B : Set} -
(A - B) -
(A - B)

f $x=1x



_$_ : V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)

f$x =1 x



_$_ : V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)

f$x =1 x

type ($) :: forall (a :: Type) (b :: a -> Type).
(forall (x :: a) -> b x) ->
(forall (x :: a) -> b x)

type f $ x = f x



_$_ : V {A : Set} {B : A - Set} -
(V (x : A) » B x) -
(V (x : A - B x)
f$x =1 x
{-# LANGUAGE UnicodeSyntax #-}
type ($) =V (a i Type) (b it a - Type).
(V (x i a) - b x) -
(V (x = a) - b x)
type f $ x = f x



Implementing VDQ



»s Glasgow Haskell Compiler > s« GHC > Commits > ¢26d299d
Dec 18, 2018 1:54am

Commit ¢26d299d (® authored 7 months ago by @ Ryan Scott Committed by Marge Bot 4 months ago ® 2

Visible dependent quantification

This implements GHC proposal 35
(https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0035-forall-arrow.rst)
by adding the ability to write kinds with

visible dependent quantification (VDQ).



»s Glasgow Haskell Compiler > s« GHC > Commits > ¢26d299d
Dec 18, 2018 1:54am

Commit ¢26d299d (® authored 7 months ago by @ Ryan Scott Committed by Marge Bot 4 months ago

Visible dependent quantification

This implements
(https://github.
by adding the ab

visible dependentT

Showing 64 changed files ¥ with 814 additions and 149 deletions

Arrow. rst)

quditLLT Leallull (VU ) .



data T (a :: Type) :: Type



data T (a :: Type) :: Type

T :: Type -> Type



data T (a :: Type) :: Type

T :: Type -> Type
T :: forall (a :: Type) -> Type



data T (a :: Type) :: Type

vT Type -> Type
T :: forall (a :: Type) -> Type



data T (a :: Type) :: Type

VT :: Type -> Type
T :Ziﬁgrall (a :: Type) -> Type

These two kinds are not equivalent (currently)



type The :: forall a -> a -> a

the :: forall a -> a -> a



J type The :: forall a -> a -> a

X the :: forall a -> a -> a



J type The :: forall a -> a -> a

x the :: forall a -> a -> a

A> the :: forall a -> a -> a




J type The :: forall a -> a -> a

x the :: forall a -> a -> a

A> the :: forall a -> a -> a

<interactive>:7:8: error:
- Illegal visible, dependent
quantification in the type of a term:
forall a -> a -> a
(GHC does not yet support this)




VDQ

* Fills in a gaping hole in GHC's kind language
* An important step towards dependent types in Haskell
« Amaze your friends, impress your coworkers, wow!

Debuts in GHC 8.10!
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