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What deriving can do for you

Standard class instances
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What deriving can do for you

Instances for newtypes
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What deriving can do for you

Instances for any class
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Okay, what’s the problem?
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Quiz time

What does this do?
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Quiz time

We can’t derive Show via GeneralizedNewtypeDeriving :(
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Quiz time

What does this do?
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Quiz time
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The deriving resolution algorithm

1 If deriving a class which supports bespoke instances:

1 If deriving Eq, Ord, Ix, or Bounded for a newtype, use the GeneralizedNewtypeDeriving strategy (even if the
language extension isn’t enabled).

2 If deriving Functor, Foldable, or Enum for a newtype, the datatype can be successfully used with
GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving has been enabled, use the
GeneralizedNewtypeDeriving strategy.

3 Otherwise, if deriving a class which supports bespoke instances, and the corresponding language extension is

enabled (if necessary), use the bespoke strategy. If the language extension is not enabled, throw an error.

2 If not deriving a class which supports bespoke instances:

1 If deriving an instance for a newtype and both -XGeneralizedNewtypeDeriving and -XDeriveAnyClass are
enabled, default to DeriveAnyClass, but emit a warning stating the ambiguity.

2 Otherwise, if -XDeriveAnyClass is enabled, use DeriveAnyClass.
3 Otherwise, if deriving an instance for a newtype, the datatype and typeclass can be successfully used with

GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving is enabled, do so.

4 Otherwise, throw an error.

wat.
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Solution: deriving strategies!

Allow programmers to disambiguate the strategy they want to use
when deriving

Example:
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The three (current) deriving strategies

bespoke
Definition: be-spoke (adj.) Tailor-made, custom-built

Derives a ”hand-crafted instance” for a class

Only applies to a handful of classes GHC knows about (Eq, Show,
Functor, Data, etc.)
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The three (current) deriving strategies

newtype
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The three (current) deriving strategies

anyclass

Ryan Scott Taming the deriving zoo April 12, 2017 14 / 1



Takeaways

Deriving strategies resolve many current limitations and ambiguities
with the deriving mechanism (including GHC Trac #10598)

Make it easier to extend deriving in the future

Will (hopefully) land in GHC 8.2

Any questions?
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The bikeshed needs a new coat of paint

bespoke might sound weird if you’re not used to Commonwealth
English

Other suggestions:

standard

builtin

magic

wiredin

native

original

specialized
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The bikeshed needs a new coat of paint (pt. 2)

Instead of this syntax:

We could also use this syntax:
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The bikeshed needs a new coat of paint (pt. 3)

We could avoid allocating new keywords in one of two ways

Pragmas:

Magic type synonyms:
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Other possible deriving strategies

WARNING
Half-baked ideas ahead!
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Unsafe GeneralizedNewtypeDeriving

You currently can’t do this (because roles aren’t higher-order)

We could have a variant of the newtype strategy that uses
unsafeCoerce instead of coerce
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Context-less StandaloneDeriving

You currently must provide an instance context whenever you derive
an instance standalone (whereas deriving clauses don’t)

Might we allow users to write standalone instances without a context?

Could facilitate Template Haskell libraries which tackle boilerplate
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GHC plugin-based deriving strategies

Allow users to write their own strategies
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