
Taming the deriving zoo

Ryan Scott

Indiana University

github.com/RyanGlScott

rgscott@indiana.edu

April 12, 2017

Ryan Scott Taming the deriving zoo April 12, 2017 1 / 1



What deriving can do for you

Standard class instances

Ryan Scott Taming the deriving zoo April 12, 2017 2 / 1



What deriving can do for you

Instances for newtypes

Ryan Scott Taming the deriving zoo April 12, 2017 3 / 1



What deriving can do for you

Instances for any class

Ryan Scott Taming the deriving zoo April 12, 2017 4 / 1



Okay, what’s the problem?

Ryan Scott Taming the deriving zoo April 12, 2017 5 / 1



Quiz time

What does this do?

Ryan Scott Taming the deriving zoo April 12, 2017 6 / 1



Quiz time

We can’t derive Show via GeneralizedNewtypeDeriving :(

Ryan Scott Taming the deriving zoo April 12, 2017 7 / 1



Quiz time

What does this do?

Ryan Scott Taming the deriving zoo April 12, 2017 8 / 1



Quiz time

Ryan Scott Taming the deriving zoo April 12, 2017 9 / 1



The deriving resolution algorithm

1 If deriving a class which supports bespoke instances:

1 If deriving Eq, Ord, Ix, or Bounded for a newtype, use the GeneralizedNewtypeDeriving strategy (even if the
language extension isn’t enabled).

2 If deriving Functor, Foldable, or Enum for a newtype, the datatype can be successfully used with
GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving has been enabled, use the
GeneralizedNewtypeDeriving strategy.

3 Otherwise, if deriving a class which supports bespoke instances, and the corresponding language extension is

enabled (if necessary), use the bespoke strategy. If the language extension is not enabled, throw an error.

2 If not deriving a class which supports bespoke instances:

1 If deriving an instance for a newtype and both -XGeneralizedNewtypeDeriving and -XDeriveAnyClass are
enabled, default to DeriveAnyClass, but emit a warning stating the ambiguity.

2 Otherwise, if -XDeriveAnyClass is enabled, use DeriveAnyClass.
3 Otherwise, if deriving an instance for a newtype, the datatype and typeclass can be successfully used with

GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving is enabled, do so.

4 Otherwise, throw an error.

wat.

Ryan Scott Taming the deriving zoo April 12, 2017 10 / 1



Solution: deriving strategies!

Allow programmers to disambiguate the strategy they want to use
when deriving

Example:

Ryan Scott Taming the deriving zoo April 12, 2017 11 / 1



The three (current) deriving strategies

bespoke
Definition: be-spoke (adj.) Tailor-made, custom-built

Derives a ”hand-crafted instance” for a class

Only applies to a handful of classes GHC knows about (Eq, Show,
Functor, Data, etc.)

Ryan Scott Taming the deriving zoo April 12, 2017 12 / 1



The three (current) deriving strategies

newtype

Ryan Scott Taming the deriving zoo April 12, 2017 13 / 1



The three (current) deriving strategies

anyclass

Ryan Scott Taming the deriving zoo April 12, 2017 14 / 1



Takeaways

Deriving strategies resolve many current limitations and ambiguities
with the deriving mechanism (including GHC Trac #10598)

Make it easier to extend deriving in the future

Will (hopefully) land in GHC 8.2

Any questions?

Ryan Scott Taming the deriving zoo April 12, 2017 15 / 1



The bikeshed needs a new coat of paint

bespoke might sound weird if you’re not used to Commonwealth
English

Other suggestions:

standard

builtin

magic

wiredin

native

original

specialized

Ryan Scott Taming the deriving zoo April 12, 2017 1 /



The bikeshed needs a new coat of paint (pt. 2)

Instead of this syntax:

We could also use this syntax:

Ryan Scott Taming the deriving zoo April 12, 2017 2 /



The bikeshed needs a new coat of paint (pt. 3)

We could avoid allocating new keywords in one of two ways

Pragmas:

Magic type synonyms:

Ryan Scott Taming the deriving zoo April 12, 2017 3 /



Other possible deriving strategies

WARNING
Half-baked ideas ahead!

Ryan Scott Taming the deriving zoo April 12, 2017 4 /



Unsafe GeneralizedNewtypeDeriving

You currently can’t do this (because roles aren’t higher-order)

We could have a variant of the newtype strategy that uses
unsafeCoerce instead of coerce

Ryan Scott Taming the deriving zoo April 12, 2017 5 /



Context-less StandaloneDeriving

You currently must provide an instance context whenever you derive
an instance standalone (whereas deriving clauses don’t)

Might we allow users to write standalone instances without a context?

Could facilitate Template Haskell libraries which tackle boilerplate

Ryan Scott Taming the deriving zoo April 12, 2017 6 /



GHC plugin-based deriving strategies

Allow users to write their own strategies

Ryan Scott Taming the deriving zoo April 12, 2017 7 /


