Taming the deriving zoo

Ryan Scott

Indiana University

) github.com/RyanGlScott
= rgscott@indiana.edu

April 12, 2017

Ryan Scott Taming the deriving zoo

April 12, 2017

1/1



What deriving can do for you

Standard class instances



What deriving can do for you

Instances for newtypes



What deriving can do for you

Instances for any class



Ryan

Okay, what's the problem?

Scott Taming the deriving zoo April 12, 2017

5/1



Quiz time

What does this do?

Ryan Scott Taming the deriving zoo April 12, 2017 6/1



Quiz time

@ We can't derive Show via GeneralizedNewtypeDeriving :(



Quiz time

What does this do?

Ryan Scott Taming the deriving zoo April 12, 2017 8/1



Quiz time



The deriving resolution algorithm

o If deriving a class which supports bespoke instances:
@ If deriving Eq, Ord, Ix, or Bounded for a newtype, use the GeneralizedNewtypeDeriving strategy (even if the
language extension isn't enabled).
@ |f deriving Functor, Foldable, or Enum for a newtype, the datatype can be successfully used with
GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving has been enabled, use the
GeneralizedNewtypeDeriving strategy.

@ Otherwise, if deriving a class which supports bespoke instances, and the corresponding language extension is

enabled (if necessary), use the bespoke strategy. If the language extension is not enabled, throw an error.

e If not deriving a class which supports bespoke instances:

@ I deriving an instance for a newtype and both -XGeneralizedNewtypeDeriving and -XDeriveAnyClass are
enabled, default to DeriveAnyClass, but emit a warning stating the ambiguity.
Otherwise, if ~XDeriveAnyClass is enabled, use DeriveAnyClass.
Otherwise, if deriving an instance for a newtype, the datatype and typeclass can be successfully used with
GeneralizedNewtypeDeriving, and -XGeneralizedNewtypeDeriving is enabled, do so.

Otherwise, throw an error.

© 00

wat.

Taming the deriving zoo April 12,2017 10 /1



Solution: deriving strategies!

@ Allow programmers to disambiguate the strategy they want to use
when deriving

o Example:

Taming the deriving zoo April 12,2017 11 /1



The three (current) deriving strategies

bespoke

@ Definition: be-spoke (adj.) Tailor-made, custom-built
@ Derives a "hand-crafted instance” for a class

@ Only applies to a handful of classes GHC knows about (Eq, Show,
Functor, Data, etc.)

Taming the deriving zoo April 12,2017 12 /1



The three (current) deriving strategies

newtype

Taming the deriving zoo April 12,2017 13 /1



The three (current) deriving strategies

anyclass

Taming the deriving zoo April 12,2017 14 /1



Takeaways

@ Deriving strategies resolve many current limitations and ambiguities
with the deriving mechanism (including GHC Trac #10598)

@ Make it easier to extend deriving in the future
o Will (hopefully) land in GHC 8.2

Any questions?

Taming the deriving zoo April 12,2017 15 /1



The bikeshed needs a new coat of paint

@ bespoke might sound weird if you're not used to Commonwealth
English

@ Other suggestions:

standard

builtin

magic

wiredin

native

original

specialized



|
The bikeshed needs a new coat of paint (pt. 2)

@ Instead of this syntax:

@ We could also use this syntax:



|
The bikeshed needs a new coat of paint (pt. 3)

@ We could avoid allocating new keywords in one of two ways
@ Pragmas:

@ Magic type synonyms:



-
Other possible deriving strategies

WARNING
Half-baked ideas ahead!

Ryan Scott Taming the deriving zoo April 12, 2017 4/



Unsafe GeneralizedNewtypeDeriving

@ You currently can't do this (because roles aren't higher-order)

@ We could have a variant of the newtype strategy that uses
unsafeCoerce instead of coerce

5/



Context-less StandaloneDeriving

@ You currently must provide an instance context whenever you derive
an instance standalone (whereas deriving clauses don't)

@ Might we allow users to write standalone instances without a context?

@ Could facilitate Template Haskell libraries which tackle boilerplate



-
GHC plugin-based deriving strategies

@ Allow users to write their own strategies



