The verified-classes Library:
Big Proofs, Little Tedium
Ryan Scott Ryan Newton

Indiana University UJ

Midwest PL Summit 2019

class Ord a where
(<=) :: a -> a -> Bool

-- Transitivity:
- = 1f x <=y && y <= z,
—— then x <= z
class Ord a where
(<=) :: a -> a -> Bool

class Ord a => VOrd a where
legTransitive

o M (x, y, z :: a)

-> (x <=y) :~: True
-> (y <= z) :~: True
-> (x <= z) :~: True

data T a = MkT1 a | MkT2 a | MkT3 a

data T a = MkT1 a | MkT2 a | MkT3 a

instance VOrd a => VOrd (T a) where
leqTransitive t t' t'"' Refl Refl =
case (t, t', t'') of

(MKT1 x, MKT1 y, MkT1 z)
| Refl <- leqTransitive x y z Refl Refl
= Refl

(MkT2 x, MkT2 y, MkT2 z)
| Refl <- leqTransitive x y z Refl Refl
= Refl

(MkT3 x, MKkT3 y, MkT3 z)
| Refl <- leqTransitive x y z Refl Refl

= Refl

(MkT1 _, _, MkT2 _)
= Refl

(MkT1 _, _, MkT3 _)
= Refl

(MkT2 _, _, MkT3 _)

= Refl

data T a = MkT1 a | MkT2 a | MkT3 a

efl Refl

y z Refl Refl

| Refl
= Ref

X y z Refl Refl

data T a = MkT1 a | MkT2 a | MkT3 a

instance VOrd a => VOrd (T a) where
legTransitive = defaultlLeqgTransitive

data T a = MkT1 a | ... | MkTn a

instance VOrd a => VOrd (T a) where
legTransitive = defaultlLeqgTransitive

Generic and Flexible Defaults for Verified,
Law-Abiding Type-Class Instances

Ryan G. Scott
Indiana University
United States
rgscott@indiana.edu

Abstract

Dependently typed languages allow programmers to state
and prove type class laws by simply encoding the laws as
class methods. But writing implementations of these meth-
ods frequently give way to large amounts of routine, boil-
erplate code, and depending on the law involved, the size
of these proofs can grow superlinearly with the size of the
datatypes involved.

We present a technique for automating away large swaths
of this boilerplate by leveraging datatype-generic program-
ming. We observe that any algebraic data type has an equiv-
alent representation type that is composed of simpler, smaller
types that are simpler to prove theorems over. By construct-
ing an isomorphism between a datatype and its represen-

Ryan R. Newton
Indiana University
United States
rrnewton@indiana.edu

(Haskell °19), August 22-23, 2019, Berlin, Germany. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3331545.3342591

1 Introduction

Various programming languages support combining type
classes [34], or similar features, with dependent type systems,
including Agda [11], Clean [29], Coq [25], F* [19], Idris [7],
Isabelle [14], and Lean [5]. Even Haskell, the language which
inspired the development of type classes, is moving towards
adding full-spectrum dependent types [12, 35], and deter-
mined Haskell users can already write many dependently
typed programs using the singletons encoding [13].

Type classes and dependent types together make an ap-
pealing combination since many classes come equipped with

Generic and Flexible Defaults for Verified,
Law-Abiding Type-Class Instances

Ryan G. Scott
Indiana University
United States
rgscott@indiana.edu

Abstract

Dependently typed languages allow programmers to state
and prove type class laws by simply encoding the laws as
class methods. But writing implementations of these meth-
ods frequently give way to large amounts of routine, boil-
erplate code, and depending on the law involved, the size
of these proofs can grow superlinearly with the size of the
datatypes involved.

We present a technique for automating away large swaths
of this boilerplate by leveraging datatype-generic program-
ming. We observe that any algebraic data type has an equiv-
alent representation type that is composed of simpler, smaller
types that are simpler to prove theorems over. By construct-
ing an isomorphism between a datatype and its represen-

Ryan R. Newton
Indiana University
United States
rrnewton@indiana.edu

(Haskell °19), August 22-23, 2019, Berlin, Germany. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3331545.3342591

1 Introduction

Various programming languages support combining type
classes [34], or similar features, with dependent type systems,
including Agda [11], Clean [29], Coq [25], F* [19], Idris [7],
Isabelle [14], and Lean [5]. Even Haskell, the language which
inspired the development of type classes, is moving towards
adding full-spectrum dependent types [12, 35], and deter-
mined Haskell users can already write many dependently
typed programs using the singletons encoding [13].

Type classes and dependent types together make an ap-
pealing combination since many classes come equipped with

W= Hackage :: [Package]

- Browse - What's new - Upload - User accounts

base: Basic libraries

[bsd3, library, prelude] [Propose Tags]

This package contains the Standard Haskell Prelude and its support libraries, and a large collection of useful
libraries ranging from data structures to parsing combinators and debugging utilities.

Functor

/

Comonad

Applicative

\

Semigroup

'

Monoid

: Category

Alternative Foldable Monad ._1 Arrow 9 ArrowZero) ArrowPlus
Traversable MonadFix MonadPlus ArrowApply ArrowChoice ArrowLoop

Functor

/

Comonad

Applicative

\

Semigroup

'

Monoid

: Category

Alternative Foldable Monad '_1 Arrow 9 ArrowZero) ArrowPlus
Traversable MonadFix MonadPlus ArrowApply ArrowChoice ArrowLoop

9TqesJaned]

~-00
= -01
®-02

dnou3twasg

P40

PTOUOK

dizpeuol

SNTJpPeUOK

PEUO

40312Un

b3

1-----
|

;

|

—

ﬂ

-

E

ﬂ

9AT}ed1T1ddy

SATIBUJD]ITY

|

dnoJd3TwasuerTaqy

I o I'g) o T} o
o N — —

(spuooas) awn uonge[duio))

verified-classes

» Scrap your type class proof boilerplate as easily as any
other type class boilerplate

* Flexible enough to deal with existing code

* Implemented in GHC, but ideas can be ported to other
dependently typed languages

https://gitlab.com/RyanGlScott/verified-classes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

