
Generic programming for the masses

Ryan Scott

Indiana University

github.com/RyanGlScott

rgscott@indiana.edu

April 12, 2017

Ryan Scott Generic programming for the masses April 12, 2017 1 / 1

Common scenario

We have a function we want to implement for many data types

Equality, comparison, pretty-printing, etc.

In Haskell, usually accomplished via type classes

Ryan Scott Generic programming for the masses April 12, 2017 2 / 1

One example

Ryan Scott Generic programming for the masses April 12, 2017 3 / 1

Another example

Ryan Scott Generic programming for the masses April 12, 2017 4 / 1

Notice a pattern?

All Equal instances have the very similar structure

Tedious, and requires maintenance

Surely there must be a way to automate this!

Ryan Scott Generic programming for the masses April 12, 2017 5 / 1

Common ways to automate the creation of instances

Built-in language support (straight-up magic)

Macros (slightly more palatable magic)

Ryan Scott Generic programming for the masses April 12, 2017 6 / 1

Built-in language support

You can automatically derive certain privileged typeclasses

The deriving Show bit causes this code to be generated:

Ryan Scott Generic programming for the masses April 12, 2017 7 / 1

deriving drawbacks

Complete hides the algorithm from users (unless you want to dig
through GHC’s source to understand it!)

If your type class isn’t one of the exalted few (Eq, Ord, Read, Show,
etc.), you can’t use deriving with it

Ryan Scott Generic programming for the masses April 12, 2017 8 / 1

Macros

GHC has macro system called Template Haskell (TH)

Allows programmers to

Reify info about top-level definition
Quasiquote Haskell source code into a manipulatable TH AST
Splice TH AST back into source code

Can be leveraged to derive instances

Ryan Scott Generic programming for the masses April 12, 2017 9 / 1

Template Haskell example

(Code by Sami Hangaslammi: https://gist.github.com/shangaslammi/1524967)

Ryan Scott Generic programming for the masses April 12, 2017 10 / 1

https://gist.github.com/shangaslammi/1524967

Template Haskell example (cont’d.)

Typing this into Haskell source code:

Splices this instance (visible via ghc -ddump-splices):

Ryan Scott Generic programming for the masses April 12, 2017 11 / 1

Template Haskell drawbacks

TH is a nice tool when you can use it, but...

Learning curve
Staging issues
Ugly as sin
Still requires several gallons of magic to work

Ryan Scott Generic programming for the masses April 12, 2017 12 / 1

We need a better way to automatically derive instances

Goals:
1 Make the instance deriving algorithm transparent to programmers
2 Extensible to many type classes
3 Use as much pure Haskell as possible (minimize magic)

Ryan Scott Generic programming for the masses April 12, 2017 13 / 1

Aside: regular datatypes form an algebra!

We can form an algebra (semiring) out of Haskell datatypes (Yorgey
and Piponi)

A semiring is a set R with:

Associative operations +, • with identities 0, 1
+ is commutative
• distributes over +
Neither + nor • necessarily have inverses

Examples: (N,+,×), ({true, false}, or, and)

Ryan Scott Generic programming for the masses April 12, 2017 14 / 1

Putting the algebra in algebraic datatypes

We can view Haskell datatypes abstractly through the lens of
polynomial functors

We inductively define the universe Fun of polynomial functors:

Constant functors: KA ∈ Fun where KA a = A
Identity functor: X ∈ Fun where X a = a
Sums of functors: ∀F ,G ∈ Fun, F + G ∈ Fun where
(F + G) a = F a + G a
Products of functors: ∀F ,G ∈ Fun, F × G ∈ Fun where
(F × G) a = F a× G a

Abbreviate F × G as FG

Ryan Scott Generic programming for the masses April 12, 2017 15 / 1

Putting the algebra in algebraic datatypes (cont’d)

Polynomial functors form a semiring under + and ×, where 1 = KUnit

and 0 = KVoid

Haskell datatypes are isomorphic to polynomial functors!

Examples:

data Bool = False | True

B = 1 + 1
data List a = Nil | Cons a (List a)

L(A) = 1 + A× L(A)
data Tree a = Leaf | Node a | Branch (Tree a) a (Tree a)

T (A) = 1 + A + A× T (A)2

Ryan Scott Generic programming for the masses April 12, 2017 16 / 1

Putting it into code

Translating this encoding of datatypes to Haskell proves
straightforward:

Ryan Scott Generic programming for the masses April 12, 2017 17 / 1

Putting it into code

Continuing the previous examples:

Now we have a common vocabulary for talking about any datatype!

Ryan Scott Generic programming for the masses April 12, 2017 18 / 1

Implementing Equal generically

Recall our earlier example:

Using our new generic datatype technology, we should be able to
derive Equal instances with ease

To that end, let’s invent a generic Equal counterpart:1

1Note that the parameter in Equal is of kind *, but the one in GEqual is of kind
* -> *. More on this later.

Ryan Scott Generic programming for the masses April 12, 2017 19 / 1

Implementing Equal generically

Case 1: data U1 p = U1

A nullary constructor is always equal to itself

Ryan Scott Generic programming for the masses April 12, 2017 20 / 1

Implementing Equal generically

Case 2: data (f :+: g) p = L1 (f p) | R1 (g p)

One branch of a sum is only equal to the another value from the same
branch (and only if the underlying types are equal)

Ryan Scott Generic programming for the masses April 12, 2017 21 / 1

Implementing Equal generically

Case 3: data (f :*: g) p = f p :*: g p

A product is equal to another product if its constituent types are equal
to the corresponding types in the other pair

Ryan Scott Generic programming for the masses April 12, 2017 22 / 1

Implementing Equal generically

Case 4: newtype Rec0 c p = Rec0 c

For constants, defer to the underlying Equal instance:

Ryan Scott Generic programming for the masses April 12, 2017 23 / 1

Implementing Equal generically

Case 5: data V1 p

If a datatype is not inhabited by any values, we punt.

Ryan Scott Generic programming for the masses April 12, 2017 24 / 1

Implementing Equal generically

Now we need a way to use GEqual in an Equal instance

Solution: another typeclass!

Example instance:

Ryan Scott Generic programming for the masses April 12, 2017 25 / 1

Implementing Equal generically

Now implementing an Equal instance for any Generic instance is a
breeze!

Ryan Scott Generic programming for the masses April 12, 2017 26 / 1

Further elimination of boilerplate

We inadvertently introduced more boilerplate by having to define
Generic instances

To remedy this, we’ll introduce one small piece of magic. This:

can be done with this:

Ryan Scott Generic programming for the masses April 12, 2017 27 / 1

Further elimination of boilerplate

There’s also the eq = genericEq boilerplate.

Use default instance signatures to get around this:

Now you don’t have to implement the default definition yourself:

Ryan Scott Generic programming for the masses April 12, 2017 28 / 1

Further elimination of boilerplate

You can get the best of both worlds with GHC 7.10’s
-XDeriveAnyClass extension:

Ryan Scott Generic programming for the masses April 12, 2017 29 / 1

What else can you do with generics?

You can encode metadata with another representation type:

Ryan Scott Generic programming for the masses April 12, 2017 30 / 1

Caveats

GHC generics can incur a runtime cost due to conversion to/from
representation types

Good chance representation types can be inlined away, though

Cannot handle certain sophisticated type features, e.g.,

Ryan Scott Generic programming for the masses April 12, 2017 31 / 1

Takeaways

A generic programming technique with a much lower learning curve

Eliminates large swaths of boilerplate

Avoids many of the frustrations of deriving and Template Haskell

Any questions?

Ryan Scott Generic programming for the masses April 12, 2017 32 / 1

How GHC generics gets its metadata (pre-GHC 8.0)

-XDeriveGeneric generates proxy datatypes for metadata instances:

Ryan Scott Generic programming for the masses April 12, 2017 1 /

How GHC generics gets its metadata (GHC 8.0 and later)

Encode the metadata in the type!

Uses singleton types reify the type information as a value:

No need to generate any extra datatypes or instances!

Ryan Scott Generic programming for the masses April 12, 2017 2 /

Generic1

There’s also a way to generically implement typeclasses of kind
* -> *:

An example of a typeclass of kind * -> *:

Ryan Scott Generic programming for the masses April 12, 2017 3 /

Generic1

We can generically derive Mappable using the same machinery!

Ryan Scott Generic programming for the masses April 12, 2017 4 /

