Generic programming for the masses

Ryan Scott

Indiana University

() github.com/RyanGlScott
= rgscott@indiana.edu

April 12, 2017

Ryan Scott Generic programming for the masses

April 12, 2017

1/1



Common scenario

@ We have a function we want to implement for many data types
o Equality, comparison, pretty-printing, etc.

@ In Haskell, usually accomplished via type classes

Generic programming for the masses April 12, 2017

2/1



One example

Generic programming for the masses April 12, 2017 3/1



Another example

Generic programming for the masses April 12, 2017 4/1



Notice a pattern?

@ All Equal instances have the very similar structure
@ Tedious, and requires maintenance

@ Surely there must be a way to automate this!

Generic programming for the masses April 12, 2017

5/1



Common ways to automate the creation of instances

@ Built-in language support (straight-up magic)

@ Macros (slightly more palatable magic)

Generic programming for the masses April 12, 2017 6/1



|
Built-in language support

@ You can automatically derive certain privileged typeclasses

@ The deriving Show bit causes this code to be generated:

Generic programming for the masses April 12, 2017

7/1



deriving drawbacks

e Complete hides the algorithm from users (unless you want to dig
through GHC's source to understand it!)

o If your type class isn't one of the exalted few (Eq, Ord, Read, Show,
etc.), you can't use deriving with it

Generic programming for the masses April 12, 2017 8/1



Macros

@ GHC has macro system called Template Haskell (TH)
@ Allows programmers to
Reify info about top-level definition

Splice TH AST back into source code

@ Can be leveraged to derive instances

Ryan Scott Generic programming for the masses

Quasiquote Haskell source code into a manipulatable TH AST

April 12, 2017

9/1



Template Haskell example

(Code by Sami Hangaslammi: https://gist.github.com/shangaslammi/1524967)

Generic programming for the masses April 12, 2017 10/1


https://gist.github.com/shangaslammi/1524967

|
Template Haskell example (cont'd.)

@ Typing this into Haskell source code:

@ Splices this instance (visible via ghc -ddump-splices):

Generic programming for the masses April 12, 2017 1 /1



-
Template Haskell drawbacks

@ TH is a nice tool when you can use it, but...

Learning curve
Staging issues
Ugly as sin

"]
]
]
o Still requires several gallons of magic to work

Generic programming for the masses April 12, 2017 12/1



We need a better way to automatically derive instances

o Goals:

@ Make the instance deriving algorithm transparent to programmers
@ Extensible to many type classes
© Use as much pure Haskell as possible (minimize magic)

Generic programming for the masses April 12, 2017 13/1



Aside: regular datatypes form an algebral

@ We can form an algebra (semiring) out of Haskell datatypes (Yorgey
and Piponi)
@ A semiring is a set R with:

o Associative operations +, e with identities 0, 1
e + is commutative

o e distributes over +

o Neither + nor e necessarily have inverses

e Examples: (N, +, %), ({true, false},or, and)

Generic programming for the masses April 12, 2017 14 /1



-
Putting the algebra in algebraic datatypes

@ We can view Haskell datatypes abstractly through the lens of
polynomial functors
@ We inductively define the universe Fun of polynomial functors:
o Constant functors: Ka € Fun where Ky a= A
e lIdentity functor: X € Fun where X a =a
e Sums of functors: VF, G € Fun, F + G € Fun where
(F+G)a=Fa+Ga
e Products of functors: VF, G € Fun, F x G € Fun where
(FxG)a=FaxGa

@ Abbreviate F x G as FG

Generic programming for the masses April 12, 2017 15/1



-
Putting the algebra in algebraic datatypes (cont'd)

@ Polynomial functors form a semiring under + and x, where 1 = Kypit
and 0 = KVoid
@ Haskell datatypes are isomorphic to polynomial functors!
@ Examples:
e data Bool
B=1+1
o data List a = Nil | Cons a (List a)
L(A) =1+ Ax L(A)
o data Tree a = Leaf | Node a | Branch (Tree a) a (Tree a)
T(A)=1+A+Ax T(A)?

False | True

Generic programming for the masses April 12, 2017 16 /1



-
Putting it into code

@ Translating this encoding of datatypes to Haskell proves
straightforward:

Generic programming for the masses April 12, 2017 17 /1



-
Putting it into code

@ Continuing the previous examples:
[}
o
o

@ Now we have a common vocabulary for talking about any datatype!

Generic programming for the masses April 12, 2017 18/1



Implementing Equal generically

@ Recall our earlier example:
@ Using our new generic datatype technology, we should be able to
derive Equal instances with ease

e To that end, let's invent a generic Equal counterpart:!

'Note that the parameter in Equal is of kind *, but the one in GEqual is of kind
* => *. More on this later.

Generic programming for the masses April 12, 2017 19/1



Implementing Equal generically

@ Case 1: data Ul p = Ul
o A nullary constructor is always equal to itself

Generic programming for the masses April 12, 2017 20/1



Implementing Equal generically

o Case 2: data (f :+: g) p=1L1 (f p) | R1 (g p)
e One branch of a sum is only equal to the another value from the same
branch (and only if the underlying types are equal)

Generic programming for the masses April 12, 2017 21 /1



Implementing Equal generically

@ Case 3: data (f :*: g) p==fp :*x: gp
e A product is equal to another product if its constituent types are equal
to the corresponding types in the other pair

Generic programming for the masses April 12, 2017 22 /1



Implementing Equal generically

o Case 4: newtype RecO ¢ p = RecO ¢
o For constants, defer to the underlying Equal instance:

Generic programming for the masses April 12, 2017 23 /1



Implementing Equal generically

o Case b: data V1 p
o If a datatype is not inhabited by any values, we punt.

Generic programming for the masses April 12, 2017 24 /1



Implementing Equal generically

o Now we need a way to use GEqual in an Equal instance
@ Solution: another typeclass!

@ Example instance:

Generic programming for the masses April 12, 2017 25 /1



Implementing Equal generically

@ Now implementing an Equal instance for any Generic instance is a
breeze!

Generic programming for the masses April 12, 2017 26 /1



Further elimination of boilerplate

@ We inadvertently introduced more boilerplate by having to define
Generic instances

@ To remedy this, we'll introduce one small piece of magic. This:

@ can be done with this:

Generic programming for the masses April 12, 2017 27 /1



Further elimination of boilerplate

@ There's also the eq = genericEq boilerplate.
@ Use default instance signatures to get around this:

@ Now you don't have to implement the default definition yourself:

Generic programming for the masses April 12, 2017 28 /1



Further elimination of boilerplate

@ You can get the best of both worlds with GHC 7.10’s
-XDeriveAnyClass extension:

Generic programming for the masses April 12, 2017 29 /1



What else can you do with generics?

@ You can encode metadata with another representation type:

Generic programming for the masses April 12, 2017 30/1



Caveats

@ GHC generics can incur a runtime cost due to conversion to/from
representation types
e Good chance representation types can be inlined away, though

@ Cannot handle certain sophisticated type features, e.g.,

Generic programming for the masses April 12, 2017 31/1



Takeaways

@ A generic programming technique with a much lower learning curve
@ Eliminates large swaths of boilerplate

@ Avoids many of the frustrations of deriving and Template Haskell

Any questions?

Generic programming for the masses April 12, 2017 32/1



|
How GHC generics gets its metadata (pre-GHC 8.0)

o -XDeriveGeneric generates proxy datatypes for metadata instances:

Generic programming for the masses April 12, 2017 1/



|
How GHC generics gets its metadata (GHC 8.0 and later)

@ Encode the metadata in the type!
@ Uses singleton types reify the type information as a value:

@ No need to generate any extra datatypes or instances!

Generic programming for the masses April 12, 2017 2/



Genericil

@ There's also a way to generically implement typeclasses of kind
*k —=> k:

@ An example of a typeclass of kind * -> *:

Generic programming for the masses April 12, 2017 3/



Genericil

@ We can generically derive Mappable using the same machinery!

Generic programming for the masses April 12, 2017 4/



