
Detflow: towards deterministic workflows on your
favorite OS

Ryan Scott1 Ryan Newton1

Omar Navarro-Leija2 Joe Devietti2

1Indiana University 2University of Pennsylvania

github.com/RyanGlScott

rgscott@indiana.edu

March 24, 2017

Software is nondeterministic.

Software can give different answers

Software runs differently on different machines

Software is subject to nondeterministic concurrency

How do we wrangle the
nondeterminism?

Debian Reproducible Builds

A fully deterministic OS?

A fully deterministic OS?

Statically enforced determinism

Idea: enforce determinism
statically through your language.

Statically deterministic parallelism

Don’t allow users to shoot themselves in the foot

I Restricted IO (RIO)

newtype DetIO a = DetIO (IO a) -- exported abstractly

readFile :: FilePath -> DetIO Text

writeFile :: FilePath -> Text -> DetIO ()

-- etc.

I All programs must live in DetIO

main :: DetIO ()

main = ...

Example usage

detflow in/ out/ Main.hs

I Run in environment with fixed dependencies

I Use hashdeep to verify determinism

Why Haskell?

I Most of these techniques could be ported to any language
I A purely functional language that controls side effects is far easier to

manage, though!
I We need only worry about the determinism for DetIO—pure

computations are always deterministic

API design questions

I What would a function that returns time look like?

getTime :: DetIO Time

I Can’t rely on system clock!
I Could use deterministic, logical clock

I Progress is counted by number of stores retired

I Could also return the same Time every time, but...

API design questions

I What would a function that returns a “random” number look like?

getRandomNumber :: DetIO Int

I One option...

I Watch out for entropy!

What don’t we allow?

I Arbitrary IO effects

liftIOToDetIO :: IO a -> DetIO a

I Workaround: Don’t allow them in {-# LANGUAGE Safe #-} code

What don’t we allow?

I Unrestricted memory accesses

readFile :: FilePath -> DetIO Text

writeFile :: FilePath -> Text -> DetIO ()

I Easy to end up with race conditions

Thread 1

writeFile "foo.txt"

"Hello, World"

Thread 2

do foo <- readFile "foo.txt"

if foo == "Hello, World"

then ...

else ...

What don’t we allow?: unrestricted memory accesses

I Solution: fine-grained, thread-level permissions

/abcdefg/hijklmn/opqrstu
Thread 1: R
Thread 2: R

Thread 1: R
Thread 2: R

Thread 1: RW
Thread 2:

I Read (R): Ability to read directory contents

I Read-Write (RW): Ability to read/modify directory contents, and
delete the directory

What don’t we allow?: unrestricted memory accesses

Key idea

If a thread has a RW permission
on a path, no other thread retains
permission on it.

What don’t we allow?: unrestricted memory accesses

I Design API around these permissions

forkWithPerms :: [PathPerm] -> DetIO a -> DetIO (Child a)

I If the forked computation requests permission to write a path, the
parent must relinquish its own permission to do so.

What don’t we allow?: unrestricted memory accesses

I What about symbolic links?
I Not accounted for in our model of paths
I Treating them properly would require dealing with aliasing

I For now, we disallow symlinks

What about legacy software?

What about legacy software?

I We’d like to be able to shell out to applications not written in DetIO

I How do we retain determinism while doing so?

What about legacy software?

Run legacy applications in a
deterministic runtime.

Counteracting external sources of nondeterminism

I The deterministic runtime must be resilient against many different
things in a worker process:

I Special directories: /proc, /dev/random
I Nondeterministic instructions: rdtsc, cpuid, rdrand
I Reading system time
I Concurrency (can lead to races!)
I Address-space layout randomization (ASLR)

Counteracting external sources of nondeterminism

I ”Determinizing“ OS-level operations requires some way to intercept
them

I Possible solutions:
I LD PRELOAD
I ptrace
I Hypervisors

Counteracting external sources of nondeterminism

I Obtaining a deterministic runtime for worker processes might include:
I Disallowing ”exotic“ process execution (e.g., background processes)
I Running everything sequentially (i.e., intercept pthread create)
I Intercepting naughty library calls/system calls whenever possible
I Passing path permissions from the DetIO program to the runtime

Use case: fread and fwrite

I From the manpage for fread:

“On success, fread() and fwrite() return the
number of items read or written. This number equals
the number of bytes transferred only when size is 1. If
an error occurs, or the end of the file is reached, the
return value is a short item count (or zero).”

Use case: fread and fwrite

I Using the LD PRELOAD trick:

size_t fread(void *ptr, size_t size,

size_t nmemb, FILE *stream) {

printf("Running deterministic version of fread...\n");

FILE* (*originalFread)(const char*, const char*);

originalFopen = dlsym(RTLD_NEXT, "fread");

ssize_t actual_bytes

= (*originalFread)(ptr, size, nmemb, stream);

if (actual_bytes != /* requested bytes */) {

/* Keep reading... */

}

return /* requested bytes */ ;

}

Case study: deterministic make

I The make build tool is known to suffer from race conditions when ran
in parallel

bin_PROGRAMS = multicall

install-exec-local:

cd $(DESTDIR)/$(bindir) && \

$(LN_S) multicall command1 && \

$(LN_S) multicall command2

Case study: deterministic make

I Solution: let’s make our own make!

I Dynamic enforcement of path permissions forces us to declare
dependencies correctly

Case study: deterministic make

I Pseudocode

main :: DetIO ()

main = do

forkWithPerms [{- Perms -}]

(detsystem "gcc" ["file" ++ show n ++ ".c"

, "-o"

, "file" ++ show n ++ ".o"

])

wait

detsystem "gcc" (["-o", "main"] ++

map (\n -> "file" ++ show n ++ ".o")

files)

Takeaways

I The first system to use a hybrid approach of static and dynamic
determinism enforcement

I Write deterministic code in DetIO while still retaining the ability to
run legacy code deterministically

I Combine the strengths of Haskell with a deterministic runtime

I Not much extra overhead (hopefully!)

Any questions?

