Detflow: towards deterministic workflows on your
favorite OS

Ryan Scott! Ryan Newton!
Omar Navarro-Leija> Joe Devietti?

Yndiana University 2University of Pennsylvania

() github.com/RyanGlScott

= rgscott@indiana.edu

March 24, 2017

Software is nondeterministic.

Software can give different answers

ryanglscott at Linux-T450 in
$ date
Mon Mar 20 21:03:57 EDT 2017
ryanglscott at Linux-T450 in
$ date
Mon Mar 20 21:03:59 EDT 2017

ryanglscott at Linux-T450 in ~
$ grep -m1 -ao '[0-9]' /dev/urandom | sed s/0/10/ | head -n1
9
ryanglscott at Linux-T450 in ~
$ grep -m1 -ao '[0-9]' /dev/urandom | sed s/0/10/ | head -n1

I

Software runs differently on different machines

&

moroshko commented on Jan 2 Owner
Weird... | can't reproduce the issue on my side.
Could you try to create a minimal Codepen please that demonstrates the issue?
ngarnier commented on Feb 7 » edited Member
Hi @Sarah-IFG, thanks for reporting this issue.
Unfortunately, | can't reproduce the issue with NaN , can you provide your MJML markup?

Member

fzaninotto commented on Jan 19

Can't reproduce the issue, which version of admin-on-rest are you using?

Software is subject to nondeterministic concurrency

ryanglscott at Linux-T450 in ~/Documents/Hacking/Haskell

$ runghc ParHello.hs

HeHHHleHeellellollll,oloo ,o0,,W , oW WWroWoolrorrdlrll!dldd
fd!!

!

ryanglscott at Linux-T450 in ~/Documents/Hacking/Haskell

$ runghc ParHello.hs

HHeHeHlHelelelllolkol,lo,0 o, ,W, W o WoWrWorolorlrdrldl!ld!d
d!

I

ryanglscott at Linux-T450 in ~/Documents/Hacking/Haskell
$ runghc ParHello.hs

HeHHHHleeeelllllollll, o000 ,,, W oWWwWroooolrrrrdllll!dddd
re

How do we wrangle the
nondeterminism?

Debian Reproducible Builds

Reproducibility status for packages in ‘unstable’ for ‘amd64'

Amount (ota)
15000 20000 25000

10000

5000

2014-10:01 2014-11-17 2015:07-03 20150219 2015-0407 20160526 2016-07-10 2016-08-26 2016-10-12 2015-11-28 2016-01-14 2016:03-01 2016:04-17 2076:06-03 2016-07-20 2016:09-05 2016-10-22 2016-12:08 2017-01-26 2017-03-12

-
A fully deterministic OS?

dedis@yale

Determinator an operating system for deterministic parallel computing

Background seerrces (e R

Determinator is an experimental multiprocessor, distributed OS that creates e

an environment in which anything an application computes is exactly

repeatable. It consists of a microkernel and a set of user-space runtime \

P - . . . * 4

libraries and applications. The microkernel provides a minimal APl and Child Shared | BIEEEI hreso- shared | BEEE Tvesc-

execution environment, supporting a hierarchy of “shared-nothing” address g‘prs:: System | Private Memory System | Private

spaces that can execute in parallel, but enforcing the guarantee that these R & / P

spaces evolve and interact deterministically. Atop this minimal environment, i \ S F) P 'Fw\.(—Syslem

Determinator's user-space runtime library uses distributed systems Reconciliation P4 _~~ Reconciliation

techniques to emulate familiar shared-state abstractions such as Unix _r[;ihasteé i .,,,,F,I;,‘\I

processes, global file systems, and shared memory multithreading. Multithreaded s;;r:Se Memory System

A subset of Determinator comprises PIOS (“Parallel Instructional Operating 20 / /

System”), a teaching OS derived from and providing a course framework /

similar to JOS, where students fill in missing pieces of a reference skeleton. 4 ’

Determinator/PIOS represents a complete redesign and rewrite of the core Single-threaded Private File

components of JOS. To our knowledge PIOS is the first instructional OS to Process Memory System

include and emphasize ir ly important parallel/multicore and [}

distributed OS programming practices in an undergraduate-level OS course. Y

It was used to teach CS422: Operating Systems at Yale in Spring 2010, and Determinator Kemel

is freely available for use and adaptation by others. A multithreaded process built from one space per thread, with a master
space ging synchronization and memory iliati

Determinator will also provide a starting point for a certified OS kernel project
in collaboration with the FLINT research group.

-
A fully deterministic OS?

dedis@yale Determinator ~ Dis-

erministic paral

Shared File Thread-
execution environment, supporting a hierarchy of Memory System | Private

spaces that can execute in parallel, but enforcing th® / P

spaces evolve and interact deterministically. Atop this P }w\es,‘stem
Determinator's user-space runtime library uses distriby; - Reconciliation
techniques to emulate familiar shared-state abstracj
processes, global file systems, and shared memg

A subset of Determinator comprises P1OS (‘g
System”), a teaching OS derived from ang
similar to JOS, where students fill in mj
Determinator/PIOS represents a cg
components of JOS. To our kno!
include and emphasize incre;
distributed OS programming 9
It was used to teach CS422: OpY
is freely available for use and adap A multithrea3 Wre per thread, with a master
space managin® lemory reconciliation

Determinator will also provide a starting
in collaboration with the FLINT research g

kernel project

Statically enforced determinism

ldea: enforce determinism
statically through your language.

Statically deterministic parallelism

LVars: Lattice-based Data Structures
for Deterministic Parallelism

Lindsey Kuper ~ Ryan R. Newton

Indiana University
{Ikuper, rrnewton} @cs.indiana.edu

Freeze After Writing

Quasi-Deterministic Parallel Programming with LVars

Lindsey Kuper Aaron Turon Neelakantan R. Ryan R. Newton
Indiana University MPI-SWS Krishnaswami Indiana University
Ikuper@cs.indiana.edu turon@mpi-sws.org University of Birmingham rmewton@cs.indiana.edu

N.Krishnaswami@cs.bham.ac.uk

Taming the Parallel Effect Zoo

Extensible Deterministic Parallelism with LVish

Lindsey Kuper ~ Aaron Todd ~ Sam Tobin-Hochstadt ~ Ryan R. Newton

Indiana University
{Ikuper, toddaaro, samth, rrnewton}@cs.indiana.edu

Don't allow users to shoot themselves in the foot

» Restricted 10 (RIO)

newtype DetI0 a = DetI0 (IO a) -- ezported abstractly
readFile :: FilePath -> DetI0 Text

writeFile :: FilePath -> Text -> DetIO ()

-- etc.

» All programs must live in DetI0

main :: DetIO ()
main = ...

Example usage

detflow in/ out/ Main.hs

» Run in environment with fixed dependencies *dOCer

» Use hashdeep to verify determinism

-
Why Haskell?

» Most of these techniques could be ported to any language
> A purely functional language that controls side effects is far easier to
manage, though!

» We need only worry about the determinism for Det I0—pure
computations are always deterministic

-
API design questions

\4

What would a function that returns time look like?
getTime :: DetIO Time

v

Can't rely on system clock!

v

Could use deterministic, logical clock
» Progress is counted by number of stores retired

v

Could also return the same Time every time, but...

-
API design questions

» What would a function that returns a “random” number look like?
getRandomNumber :: DetIO Int

» One option...

{In‘c get RandomNumber ()

return Y. // chosen by fair dice roll.
/ quaranteed to be random.

» Watch out for entropy!

What don't we allow?

» Arbitrary 1O effects
1iftI0ToDetIO :: IO a —-> DetlIO a

» Workaround: Don't allow them in {-# LANGUAGE Safe #-} code

What don't we allow?

» Unrestricted memory accesses

readFile :: FilePath -> DetI0 Text
writeFile :: FilePath -> Text —-> DetIO0 ()

» Easy to end up with race conditions

Thread 1 Thread 2
do foo <- readFile "foo.txt"
writeFile "foo.txt" if foo == "Hello, World"
"Hello, World" then ...

else

What don’t we allow?: unrestricted memory accesses

» Solution: fine-grained, thread-level permissions

/abcdefg/hijklmn/opgrstu

Thread 1: R Thread 1: R Thread 1: RW
Thread 2: R Thread 2: R Thread 2:

» Read (R): Ability to read directory contents

» Read-Write (RW): Ability to read/modify directory contents, and
delete the directory

What don’t we allow?: unrestricted memory accesses

Key idea

If a thread has a RW permission
on a path, no other thread retains
permission on It.

What don’t we allow?: unrestricted memory accesses

» Design API around these permissions
forkWithPerms :: [PathPerm] -> DetIO a —-> DetIO (Child a)

» If the forked computation requests permission to write a path, the
parent must relinquish its own permission to do so.

What don’t we allow?: unrestricted memory accesses

» What about symbolic links?

» Not accounted for in our model of paths
» Treating them properly would require dealing with aliasing

» For now, we disallow symlinks

-
What about legacy software?

CARL QUIT. HE'S THE
ONLY ONE WHO KNOWS
HOW TO PROGRAM THE

LEGACY SYSTEM.

www.dilbert.com scottadgame@ncl.com

IT CAN'T BE THAT
HARD. GO FIGURE IT
OUT.

@0 ©2006Scott Adama, Inc./Dist. by UFS, Inc,

-
What about legacy software?

» We'd like to be able to shell out to applications not written in DetI0

» How do we retain determinism while doing so?

-
What about legacy software?

Run legacy applications in a
deterministic runtime.

Counteracting external sources of nondeterminism

» The deterministic runtime must be resilient against many different
things in a worker process:
» Special directories: /proc, /dev/random
Nondeterministic instructions: rdtsc, cpuid, rdrand
Reading system time
Concurrency (can lead to races!)
Address-space layout randomization (ASLR)

v

vV vy

Counteracting external sources of nondeterminism

» " Determinizing“ OS-level operations requires some way to intercept
them
» Possible solutions:

» LD _PRELOAD
> ptrace
» Hypervisors

Counteracting external sources of nondeterminism

» Obtaining a deterministic runtime for worker processes might include:

» Disallowing "exotic* process execution (e.g., background processes)
» Running everything sequentially (i.e., intercept pthread_create)

> Intercepting naughty library calls/system calls whenever possible

» Passing path permissions from the DetI0 program to the runtime

Use case: fread and fwrite

» From the manpage for fread:
“On success, fread() and fwrite() return the
number of items read or written. This number equals
the number of bytes transferred only when size is 1. If
an error occurs, or the end of the file is reached, the
return value is a short item count (or zero).”

Use case: fread and fwrite

» Using the LD_PRELOAD trick:

size_t fread(void *ptr, size_t size,
size_t nmemb, FILE *stream) {
printf ("Running deterministic version of fread...\n");
FILE* (*originalFread) (const char*, const charx*);
originalFopen = dlsym(RTLD_NEXT, "fread");

ssize_t actual_bytes
= (xoriginalFread) (ptr, size, nmemb, stream);
if (actual_bytes != /* requested bytes */) {
/* Keep reading... */
}

return /* requested bytes */;

Case study: deterministic make

» The make build tool is known to suffer from race conditions when ran
in parallel

bin_PROGRAMS = multicall

install-exec-local:
cd $(DESTDIR)/$(bindir) && \
$(LN_S) multicall commandl && \
$(LN_S) multicall command?2

Case study: deterministic make

» Solution: let's make our own make!

» Dynamic enforcement of path permissions forces us to declare
dependencies correctly

Case study: deterministic make

» Pseudocode

main :: DetI0 ()
main = do
forkWithPerms [{- Perms -}]
(detsystem "gcc" ["file" ++ show n ++ ".c"
, "-o"
, "file" ++ show n ++ ".o"
D
wait
detsystem "gcc" (["-o", "main"] ++
map (\n -> "file" ++ show n ++ ".o")
files)

-
Takeaways

v

The first system to use a hybrid approach of static and dynamic
determinism enforcement

v

Write deterministic code in DetIO0 while still retaining the ability to
run legacy code deterministically

v

Combine the strengths of Haskell with a deterministic runtime

v

Not much extra overhead (hopefully!)

Any questions?

