| galois|

Copilot: Assured Runtime Verification for
Embedded Systems and Hardware

Ryan Scott, Galois Inc.

Focus: safety-critical systems

e Examples: medical devices, aircraft, nuclear power

e In this setting, system failure can result in significant damage,
injury, or death, so high levels of assurance are needed

e Copilot achieves this via runtime verification (RV)

|galois| 2

Copilot: a runtime verification (RV) framework

e Copilot is a hard realtime RV framework targeting embedded
systems (since 2010) and hardware (new!)

|galois| 3

https://github.com/Copilot-Language/copilot

RV at a glance

T s o =

|galois| 4

RV at a glance

|galois|

RV at a glance

Copilot

Temp: 19°C
(acceptable)

|galois|

RV at a glance

Copilot

Temp: 25°C
(TOO HOT)

|galois|

RV at a glance

Copilot

Temp: 25°C
(TOO HOT)

|galois|

RV at a glance

Copilot

Temp: 19°C
(acceptable)

|galois|

RV at a glance

Copilot

Temp: 17°C
(TOO COLD)

|galois|

RV at a glance

Copilot

Temp: 17°C
(TOO COLD)

|galois|

Copilot design constraints

e Monitor code should be constant-space and constant-time
o No manual memory management, for loops, or recursion

e Monitor code should be traceable to high-level requirements
o Code must be auditable

| galois| 12

Copilot: traceability

avgTemp :: Stream Float

avglTemp = ...
spec :: Spec
spec = do

trigger "heaton"

(avgTemp < 18.0) [arg avgTemp]
trigger "heatoff"

(avgTemp > 21.0) [arg avgTemp]

|galois| 13

Copilot: traceability

avgTemp :: Stream Float

avgTemp = ... Copilot translator

spec :: Spec
spec = do
trigger "heaton"
(avgTemp < 18.0) [arg avgTemp]
trigger "heatoff"
(avgTemp > 21.0) [arg avgTemp]

|galois|

14

void
void

void

if

}s
if

}s

heaton(float);
heatoff(float);

step(void) {

(heaton_guard()) {
heaton(heaton_get arg());

(heatoff_guard()) {
heatoff(heatoff _get arg());

Copilot: traceability

avgTemp :: Stream Float [void heaton(Float);]
avgTemp = ... Copilot translator void heatoff(float);

void step(void) {
spec :: Spec

spec = do if (heaton_guard()) {
trigger "heaton" heaton(heaton _get arg());
[(avgTemp < 18.0) [arg angemp]] }s
trigger "heatoff" it (heatoff_guard()) {
(avgTemp > 21.0) [arg avgTemp] heatoff(heatoff _get_arg());

}s

| galois| 15

Copilot: traceability

avgTemp :: Stream Float void heaton(float);
avgTemp = ... Copilot translator void heatoff(float);

void step(void) {

spec :: Spec

spec = do Copilot verifier if (heaton_guard()) {
trigger "heaton" heaton(heaton_get_arg());
(avgTemp < 18.0) [arg avgTemp] };
trigger "heatoff" if (heatoff_guard()) {
(avgTemp > 21.0) [arg avgTemp] heatoff(heatoff _get arg());
¥
}

| galois| 16

Copilot: traceability

avgTemp :: Stream Float
avgTemp = ... Copilot translator

void

spec :: Spec . . e

spec = do Copilot verifier if
trigger "heaton"

(avgTemp < 18.0) [arg avgTemp]
trigger "heatoff"
(avgTemp > 21.0) [arg avgTemp]

void
void

}s
if

}s

heaton(float);
heatoff(float);

step(void) {

(heaton_guard()) {
heaton(heaton_get arg());

(heatoff_guard()) {
heatoff(heatoff _get arg());

}
https://github.com/Copilot-Language/copilot-verifier

|galois| 17

https://github.com/Copilot-Language/copilot-verifier

Copilot and hardware

Reasons for hardware RV

e Many critical systems run on
FPGAs
o e.g., Integrated Modular
Avionics (IMAs) for space
applications
e Need to run monitors in
fault-containment regions,
separate from the code being
monitored
e FPGAs ideal for hard realtime

|galois| 19

Which hardware language to use?

VHDL Verilog bluespec
S I,
ystemVerilog

— CHISeU

Which hardware language to use?

bluespec

Why Bluespec?

e Bluespec’s syntaxes are familiar to both Copilot users (Bluespec
Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

|galois| 22

Why Bluespec?

e Bluespec’s syntaxes are familiar to both Copilot users (Bluespec
Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

e Bluespec’s semantics closely correspond with Copilot’s semantics

|galois| 23

Why Bluespec?

e Bluespec’s syntaxes are familiar to both Copilot users (Bluespec
Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

e Bluespec’s semantics closely correspond with Copilot’s semantics

e Well suited to high levels of assurance
o Property-based testing (Bluecheck), formal verification (Kami)

|galois| 24

Why Bluespec?

|galois|

Bluespec’s syntaxes are familiar to both Copilot users (Bluespec
Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

Bluespec’s semantics closely correspond with Copilot’s semantics

Well suited to high levels of assurance
o Property-based testing (Bluecheck), formal verification (Kami)

Can be compiled to Verilog RTL

25

Copilot versus Bluespec

|galois| 26

Copilot versus Bluespec

Values are represented as streams
that change over time

i
i
i
i
i
!
|
i
-1, 2, 3, 4, 5, ... :
countUp :: Stream Word32 i
countUp = [1] ++ (countUp + 1) :
!
|
i
i
i
i
i
i
!
|
i

|galois| 27

Copilot versus Bluespec

Values are represented as streams
that change over time

Values are stored in registers,
whose values can change each
clock cycle

-1, 2, 3, 4, 5, ... countUpModule :: Module Empty

countUp :: Stream Word32 countUpModule =
countUp :: Reg (UInt 32)
<- mkReg 1;
action

|

|

[

[

i

!

|

[

|

|

i

countUp = [1] ++ (countUp + 1) : module

i

|

[

|

i

; countUp := countUp + 1;
!
!
|
i

|galois| 28

Copilot versus Bluespec

|galois| 29

Copilot versus Bluespec

External streams represent
abstract values that are sampled
(e.g., sensor readings)

|
|
|
|
|
|
i
-- Average engine temperature :
avgTemp :: Stream Float i
avgTemp = extern "avg_temp” :
|
|
|
|
|
|
|
|
|
|
|

|galois| 30

Copilot versus Bluespec

Module interfaces can define
registers that are defined
elsewhere in the hardware

External streams represent
abstract values that are sampled
(e.g., sensor readings)

interface TempIfc
avgTemp :: Reg Float

|
|
|
|
|
|
i
-- Average engine temperature
avgTemp :: Stream Float
avgTemp = extern "avg temp"

i engineModule ::

= Module TempIfc -> Module Empty

|

|

|

|

|

|

|

|

| galois| 31

Copilot versus Bluespec

|galois| 32

Copilot versus Bluespec

Triggers can fire when a stream
satisfies a predicate

|
|
|
|
|
|
|
spec :: Spec

spec = do

trigger "heaton"

(avgTemp < 18.0) [arg avgTemp] !

trigger "heatoff"

(avgTemp > 21.0) [arg avgTemp] i
|
|
|
|
|
|
|

|galois| 33

Copilot versus Bluespec

Triggers can fire when a stream
satisfies a predicate

Rules fire on a particular clock
cycle if its condition holds:

spec :: Spec rules
spec = do "heaton": when (avgTemp < 18.0) ==>

(avgTemp < 18.0) [arg avgTemp]
trigger "heatoff"
(avgTemp > 21.0) [arg avgTemp]

"heatoff": when (avgTemp > 21.0) ==>

i

i

i

i

|

!

|

i

i

i

i

trigger "heaton" : heaton avgTemp

i

|

; heatoff avgTemp
|
i
i
|
!
|
i

|galois| 34

Copilot versus Bluespec

Other Copilot language features that Bluespec supports:
e Arrays (via Bluespec’s Vector package)
e Structs (via Bluespec’s struct feature)

e Floating-point operations* (via Bluespec’s Float package)

|galois| 35

Copilot to Bluespec: current status

e Developed Copilot-Bluespec, which automatically translates
Copilot to Bluespec code suitable for FPGA use

e Capable of translating all examples in the Copilot test suite
e Extensive test suite that checks that translated

Bluespec matches the behavior of the original
Copilot code

https://github.com/Copilot-Language/copilot-bluespec

|galois| 36

https://github.com/Copilot-Language/copilot-bluespec

Future challenges

Challenges

How to correctly translate system requirements to Copilot?
e Many workflows that use monitoring involve English-language
requirements, not formally rigorous specifications

e How can we make the process of encoding these requirements
into Copilot easier?

|galois| 38

Ogma

e (Ogma: a tool for converting high-level requirements into runtime
monitoring code

e Converts requirements into temporal logic formulae, which can
then be translated into trustworthy code written in Copilot, NASA’s
Core Flight System (cFS), Robot Operating System (ROS), and

more E !_l_- E

https://github.com/nasa/ogma

8] .

|galois| 39

https://github.com/nasa/ogma

https://docs.google.com/file/d/1CVHR2SHUoBpajixFfmyDch7R5rX5-Ba5/preview

ST

C: 748: 1 (111.806244; 24902.607422)

| galois| 41

Challenges

What is the best way to write a compiler to Bluespec?

|galois|

There are no industrial-grade Bluespec pretty-printers, aside from
the code used in the official Bluespec compiler
The Bluespec compiler can’t be used as a library

For now, we’ve forked the code in the Bluespec compiler to use in
our tool

We should do better: .@ .
https://github.com/B-Lang-org/bsc/issues/546 - .&

42

https://github.com/B-Lang-org/bsc/issues/546

Challenges

Limited support for floating-point operations

|galois|

Basic arithmetic operations, abs, and sqrt are supported
sin/cos, exponentiation, and logarithms not currently supported
Could consider using floating-point IP or VGM

Currently porting software implementations of floating-point
operations to Bluespec:
https://github.com/B-Lang-org/bsc/discussions/534 -

https://github.com/B-Lang-org/bsc/discussions/534

Copilot-Bluespec takeaways

e Copilot and Ogma are robust ecosystems for describing,
implementing, and deploying monitors.

e Bluespec is a natural fit for realizing Copilot’s style of runtime
verification in a hardware setting.

e We are continuing to reduce barriers to entry for integrating
runtime verification in high-assurance scenarios.

Copilot: https://copilot-language.github.io

Ogma: https://github.com/nasa/ogma
Copilot-Bluespec: https://github.com/Copilot-Language/copilot-bluespec

|galois| 44

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/Copilot-Language/copilot-bluespec

Backup slides

Ogma

|galois|

Ogma: a tool for translating natural-language requirements into
runtime monitoring code

Translates structured natural language into temporal logic formulae
The temporal logic can then be translated into trustworthy code
written in Copilot, NASA’s Core Flight System (cFS), Robot

Operating System (ROS), and more
pereting System (HE9 OEEAD

https://github.com/nasa/ogma

8] .

46

https://github.com/nasa/ogma

Ogma example

Requirements are expressed in structured natural language (FRETish):

scope condition component* shall* timing response*

NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase
the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within
10 seconds satisfy (airspeed >= 100)

|galois|

47

Ogma example: translated to temporal logic

|galois|

NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase
the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within
10 seconds satisfy (airspeed >= 100)

pmLTL: H (Lin flight— (Y (((0(=10) (((airspeed < 100) & ((Y (!(airspeed < 100))) |
Fin flight)) & (!(airspeed > 100)))) — (O[<10)(Fin_flight | (airspeed > 100)))) S
(((0[=10) (((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed >
100)))) — (O[<10)(Finflight | (airspeed > 100)))) & Fin flight)))) & ((!Lin_flight)
S ((!Lin flight) & Fin flight)) — (((0[=,0)(((airspeed < 100) & ((Y (!(airspeed <
100))) | Fin flight)) & (!(airspeed > 100)))) — (O[<10)(Finflight | (airspeed >
100)))) S (((O(=10j(((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin_flight)) &

(! (airspeed > 100)))) — (O[<10)(Finflight | (airspeed > 100)))) & Fin flight)),

where Fin_flight (First timepoint in flight mode) is flight & (FTP | Y !flight), Lin flight
(Last timepoint in flight mode) is !flight & Y flight, FTP (First Time Point) is ! Y true.

48

D~

S

COPILOT

C: 748: 1 (111.806244; 24902.607422)

|galois| 49

Ways to achieve assurance

Prove Test Monitor
(Runtime verification)

|galois| 50

The need for hardware RV

e Many critical systems run on FPGAs or ASICs

e Use case: System Theoretic Process Analyses (STPAS)
o Methodology for designing safe systems and preventing
critical losses
o Involve interactions between humans, software, and hardware

| galois| 51

