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Focus: safety-critical systems
● Examples: medical devices, aircraft, nuclear power

● In this setting, system failure can result in significant damage, 
injury, or death, so high levels of assurance are needed

● Copilot achieves this via runtime verification (RV)
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Copilot: a runtime verification (RV) framework
● Copilot is a hard realtime RV framework targeting embedded 

systems (since 2010) and hardware (new!)

● Used at NASA (e.g., to monitor UAV test flights)

● Open source

https://github.com/Copilot-Language/copilot

https://github.com/Copilot-Language/copilot
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RV at a glance

Temp: 19°C
  (acceptable)
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RV at a glance
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Temp: 25°C
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RV at a glance

Copilot
Temp: 17°C
  (TOO COLD)
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RV at a glance

Copilot
Temp: 17°C
  (TOO COLD)

Heat up
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Copilot design constraints
● Monitor code should be constant-space and constant-time

○ No manual memory management, for loops, or recursion

● Monitor code should be traceable to high-level requirements
○ Code must be auditable
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Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
  trigger "heaton"
    (avgTemp < 18.0) [arg avgTemp]
  trigger "heatoff"
    (avgTemp > 21.0) [arg avgTemp]
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Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
  trigger "heaton"
    (avgTemp < 18.0) [arg avgTemp]
  trigger "heatoff"
    (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
  ...
  if (heaton_guard()) {
     heaton(heaton_get_arg());
  };
  if (heatoff_guard()) {
     heatoff(heatoff_get_arg());
  };
  ...
}
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Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
  trigger "heaton"
    (avgTemp < 18.0) [arg avgTemp]
  trigger "heatoff"
    (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
  ...
  if (heaton_guard()) {
     heaton(heaton_get_arg());
  };
  if (heatoff_guard()) {
     heatoff(heatoff_get_arg());
  };
  ...
}

Copilot verifier

https://github.com/Copilot-Language/copilot-verifier

https://github.com/Copilot-Language/copilot-verifier


Copilot and hardware
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Reasons for hardware RV
● Many critical systems run on 

FPGAs
○ e.g., Integrated Modular 

Avionics (IMAs) for space 
applications

● Need to run monitors in 
fault-containment regions, 
separate from the code being 
monitored

● FPGAs ideal for hard realtime
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Which hardware language to use?

VHDL     Verilog
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VHDL     Verilog
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Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec 

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)
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Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec 

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics
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Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec 

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics

● Well suited to high levels of assurance
○ Property-based testing (Bluecheck), formal verification (Kami)
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Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec 

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics

● Well suited to high levels of assurance
○ Property-based testing (Bluecheck), formal verification (Kami)

● Can be compiled to Verilog RTL
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Copilot   versus Bluespec
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Copilot   versus Bluespec
Values are represented as streams 
that change over time

-- 1, 2, 3, 4, 5, ...
countUp :: Stream Word32
countUp = [1] ++ (countUp + 1)
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Copilot   versus Bluespec
Values are represented as streams 
that change over time

-- 1, 2, 3, 4, 5, ...
countUp :: Stream Word32
countUp = [1] ++ (countUp + 1)

Values are stored in registers, 
whose values can change each 
clock cycle

countUpModule :: Module Empty
countUpModule =
  module
    countUp :: Reg (UInt 32)
      <- mkReg 1;
    ...
    action
      countUp := countUp + 1;
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Copilot   versus Bluespec
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Copilot   versus Bluespec
External streams represent 
abstract values that are sampled 
(e.g., sensor readings)

-- Average engine temperature
avgTemp :: Stream Float
avgTemp = extern "avg_temp"
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Copilot   versus Bluespec
External streams represent 
abstract values that are sampled 
(e.g., sensor readings)

-- Average engine temperature
avgTemp :: Stream Float
avgTemp = extern "avg_temp"

Module interfaces can define 
registers that are defined 
elsewhere in the hardware

interface TempIfc
  avgTemp :: Reg Float

engineModule ::
  Module TempIfc -> Module Empty
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Copilot   versus Bluespec
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Copilot   versus Bluespec
Triggers can fire when a stream 
satisfies a predicate

spec :: Spec
spec = do
  trigger "heaton"
    (avgTemp < 18.0) [arg avgTemp]
  trigger "heatoff"
    (avgTemp > 21.0) [arg avgTemp]
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Copilot   versus Bluespec
Triggers can fire when a stream 
satisfies a predicate

spec :: Spec
spec = do
  trigger "heaton"
    (avgTemp < 18.0) [arg avgTemp]
  trigger "heatoff"
    (avgTemp > 21.0) [arg avgTemp]

Rules fire on a particular clock 
cycle if its condition holds:

rules
  "heaton": when (avgTemp < 18.0) ==>
      heaton avgTemp

  "heatoff": when (avgTemp > 21.0) ==>
      heatoff avgTemp
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Copilot   versus Bluespec
Other Copilot language features that Bluespec supports:

● Arrays (via Bluespec’s Vector package)

● Structs (via Bluespec’s struct feature)

● Floating-point operations* (via Bluespec’s Float package)
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Copilot to Bluespec: current status
● Developed Copilot-Bluespec, which automatically translates 

Copilot to Bluespec code suitable for FPGA use

● Capable of translating all examples in the Copilot test suite

● Extensive test suite that checks that translated
Bluespec matches the behavior of the original
Copilot code

https://github.com/Copilot-Language/copilot-bluespec

https://github.com/Copilot-Language/copilot-bluespec


Future challenges
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Challenges
How to correctly translate system requirements to Copilot?
● Many workflows that use monitoring involve English-language 

requirements, not formally rigorous specifications

● How can we make the process of encoding these requirements 
into Copilot easier?
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Ogma
● Ogma: a tool for converting high-level requirements into runtime 

monitoring code
● Converts requirements into temporal logic formulae, which can 

then be translated into trustworthy code written in Copilot, NASA’s 
Core Flight System (cFS), Robot Operating System (ROS), and 
more

https://github.com/nasa/ogma

https://github.com/nasa/ogma


https://docs.google.com/file/d/1CVHR2SHUoBpajixFfmyDch7R5rX5-Ba5/preview
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Challenges
What is the best way to write a compiler to Bluespec?
● There are no industrial-grade Bluespec pretty-printers, aside from 

the code used in the official Bluespec compiler
● The Bluespec compiler can’t be used as a library
● For now, we’ve forked the code in the Bluespec compiler to use in 

our tool
● We should do better: 

https://github.com/B-Lang-org/bsc/issues/546

https://github.com/B-Lang-org/bsc/issues/546
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Challenges
Limited support for floating-point operations
● Basic arithmetic operations, abs, and sqrt are supported
● sin/cos, exponentiation, and logarithms not currently supported
● Could consider using floating-point IP or VGM
● Currently porting software implementations of floating-point 

operations to Bluespec: 
https://github.com/B-Lang-org/bsc/discussions/534

https://github.com/B-Lang-org/bsc/discussions/534
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Copilot-Bluespec takeaways
● Copilot and Ogma are robust ecosystems for describing, 

implementing, and deploying monitors.
● Bluespec is a natural fit for realizing Copilot’s style of runtime 

verification in a hardware setting.
● We are continuing to reduce barriers to entry for integrating 

runtime verification in high-assurance scenarios.

Copilot: https://copilot-language.github.io
Ogma: https://github.com/nasa/ogma
Copilot-Bluespec: https://github.com/Copilot-Language/copilot-bluespec

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/Copilot-Language/copilot-bluespec


Backup slides
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Ogma
● Ogma: a tool for translating natural-language requirements into 

runtime monitoring code
● Translates structured natural language into temporal logic formulae
● The temporal logic can then be translated into trustworthy code 

written in Copilot, NASA’s Core Flight System (cFS), Robot 
Operating System (ROS), and more

https://github.com/nasa/ogma

https://github.com/nasa/ogma
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Ogma example
Requirements are expressed in structured natural language (FRETish):

scope condition component* shall* timing response*
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Ogma example: translated to temporal logic
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Ways to achieve assurance
Prove Test Monitor

     (Runtime verification)
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The need for hardware RV
● Many critical systems run on FPGAs or ASICs

● Use case: System Theoretic Process Analyses (STPAs)
○ Methodology for designing safe systems and preventing 

critical losses
○ Involve interactions between humans, software, and hardware


