
Ryan Scott, Galois Inc.

Copilot: Assured Runtime Verification for
Embedded Systems and Hardware

© Galois, Inc.22

© Galois, Inc.

Focus: safety-critical systems
● Examples: medical devices, aircraft, nuclear power

● In this setting, system failure can result in significant damage,
injury, or death, so high levels of assurance are needed

● Copilot achieves this via runtime verification (RV)

© Galois, Inc.33

© Galois, Inc.

Copilot: a runtime verification (RV) framework
● Copilot is a hard realtime RV framework targeting embedded

systems (since 2010) and hardware (new!)

● Used at NASA (e.g., to monitor UAV test flights)

● Open source

https://github.com/Copilot-Language/copilot

https://github.com/Copilot-Language/copilot

© Galois, Inc.44

© Galois, Inc.

RV at a glance

Temp: 19°C
 (acceptable)

© Galois, Inc.55

© Galois, Inc.

RV at a glance

Copilot
Temp: 19°C
 (acceptable)

© Galois, Inc.66

© Galois, Inc.

RV at a glance

Copilot
Temp: 19°C
 (acceptable)

© Galois, Inc.77

© Galois, Inc.

RV at a glance

Copilot
Temp: 25°C
 (TOO HOT)

© Galois, Inc.88

© Galois, Inc.

RV at a glance

Copilot
Temp: 25°C
 (TOO HOT)

Cool down

© Galois, Inc.99

© Galois, Inc.

RV at a glance

Copilot
Temp: 19°C
 (acceptable)

Cool down

© Galois, Inc.1010

© Galois, Inc.

RV at a glance

Copilot
Temp: 17°C
 (TOO COLD)

© Galois, Inc.1111

© Galois, Inc.

RV at a glance

Copilot
Temp: 17°C
 (TOO COLD)

Heat up

© Galois, Inc.1212

© Galois, Inc.

Copilot design constraints
● Monitor code should be constant-space and constant-time

○ No manual memory management, for loops, or recursion

● Monitor code should be traceable to high-level requirements
○ Code must be auditable

© Galois, Inc.1313

© Galois, Inc.

Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

© Galois, Inc.1414

© Galois, Inc.

Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
 ...
 if (heaton_guard()) {
 heaton(heaton_get_arg());
 };
 if (heatoff_guard()) {
 heatoff(heatoff_get_arg());
 };
 ...
}

© Galois, Inc.1515

© Galois, Inc.

Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
 ...
 if (heaton_guard()) {
 heaton(heaton_get_arg());
 };
 if (heatoff_guard()) {
 heatoff(heatoff_get_arg());
 };
 ...
}

© Galois, Inc.1616

© Galois, Inc.

Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
 ...
 if (heaton_guard()) {
 heaton(heaton_get_arg());
 };
 if (heatoff_guard()) {
 heatoff(heatoff_get_arg());
 };
 ...
}

Copilot verifier

© Galois, Inc.1717

© Galois, Inc.

Copilot: traceability
avgTemp :: Stream Float
avgTemp = ...

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

Copilot translator
void heaton(float);
void heatoff(float);

void step(void) {
 ...
 if (heaton_guard()) {
 heaton(heaton_get_arg());
 };
 if (heatoff_guard()) {
 heatoff(heatoff_get_arg());
 };
 ...
}

Copilot verifier

https://github.com/Copilot-Language/copilot-verifier

https://github.com/Copilot-Language/copilot-verifier

Copilot and hardware

© Galois, Inc.1919

© Galois, Inc.

Reasons for hardware RV
● Many critical systems run on

FPGAs
○ e.g., Integrated Modular

Avionics (IMAs) for space
applications

● Need to run monitors in
fault-containment regions,
separate from the code being
monitored

● FPGAs ideal for hard realtime

© Galois, Inc.2020

© Galois, Inc.

Which hardware language to use?

VHDL Verilog

© Galois, Inc.2121

© Galois, Inc.

Which hardware language to use?

VHDL Verilog

© Galois, Inc.2222

© Galois, Inc.

Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

© Galois, Inc.2323

© Galois, Inc.

Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics

© Galois, Inc.2424

© Galois, Inc.

Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics

● Well suited to high levels of assurance
○ Property-based testing (Bluecheck), formal verification (Kami)

© Galois, Inc.2525

© Galois, Inc.

Why Bluespec?
● Bluespec’s syntaxes are familiar to both Copilot users (Bluespec

Haskell) and hardware enthusiasts (Bluespec SystemVerilog)

● Bluespec’s semantics closely correspond with Copilot’s semantics

● Well suited to high levels of assurance
○ Property-based testing (Bluecheck), formal verification (Kami)

● Can be compiled to Verilog RTL

© Galois, Inc.2626

© Galois, Inc.

Copilot versus Bluespec

© Galois, Inc.2727

© Galois, Inc.

Copilot versus Bluespec
Values are represented as streams
that change over time

-- 1, 2, 3, 4, 5, ...
countUp :: Stream Word32
countUp = [1] ++ (countUp + 1)

© Galois, Inc.2828

© Galois, Inc.

Copilot versus Bluespec
Values are represented as streams
that change over time

-- 1, 2, 3, 4, 5, ...
countUp :: Stream Word32
countUp = [1] ++ (countUp + 1)

Values are stored in registers,
whose values can change each
clock cycle

countUpModule :: Module Empty
countUpModule =
 module
 countUp :: Reg (UInt 32)
 <- mkReg 1;
 ...
 action
 countUp := countUp + 1;

© Galois, Inc.2929

© Galois, Inc.

Copilot versus Bluespec

© Galois, Inc.3030

© Galois, Inc.

Copilot versus Bluespec
External streams represent
abstract values that are sampled
(e.g., sensor readings)

-- Average engine temperature
avgTemp :: Stream Float
avgTemp = extern "avg_temp"

© Galois, Inc.3131

© Galois, Inc.

Copilot versus Bluespec
External streams represent
abstract values that are sampled
(e.g., sensor readings)

-- Average engine temperature
avgTemp :: Stream Float
avgTemp = extern "avg_temp"

Module interfaces can define
registers that are defined
elsewhere in the hardware

interface TempIfc
 avgTemp :: Reg Float

engineModule ::
 Module TempIfc -> Module Empty

© Galois, Inc.3232

© Galois, Inc.

Copilot versus Bluespec

© Galois, Inc.3333

© Galois, Inc.

Copilot versus Bluespec
Triggers can fire when a stream
satisfies a predicate

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

© Galois, Inc.3434

© Galois, Inc.

Copilot versus Bluespec
Triggers can fire when a stream
satisfies a predicate

spec :: Spec
spec = do
 trigger "heaton"
 (avgTemp < 18.0) [arg avgTemp]
 trigger "heatoff"
 (avgTemp > 21.0) [arg avgTemp]

Rules fire on a particular clock
cycle if its condition holds:

rules
 "heaton": when (avgTemp < 18.0) ==>
 heaton avgTemp

 "heatoff": when (avgTemp > 21.0) ==>
 heatoff avgTemp

© Galois, Inc.3535

© Galois, Inc.

Copilot versus Bluespec
Other Copilot language features that Bluespec supports:

● Arrays (via Bluespec’s Vector package)

● Structs (via Bluespec’s struct feature)

● Floating-point operations* (via Bluespec’s Float package)

© Galois, Inc.3636

© Galois, Inc.

Copilot to Bluespec: current status
● Developed Copilot-Bluespec, which automatically translates

Copilot to Bluespec code suitable for FPGA use

● Capable of translating all examples in the Copilot test suite

● Extensive test suite that checks that translated
Bluespec matches the behavior of the original
Copilot code

https://github.com/Copilot-Language/copilot-bluespec

https://github.com/Copilot-Language/copilot-bluespec

Future challenges

© Galois, Inc.3838

© Galois, Inc.

Challenges
How to correctly translate system requirements to Copilot?
● Many workflows that use monitoring involve English-language

requirements, not formally rigorous specifications

● How can we make the process of encoding these requirements
into Copilot easier?

© Galois, Inc.3939

© Galois, Inc.

Ogma
● Ogma: a tool for converting high-level requirements into runtime

monitoring code
● Converts requirements into temporal logic formulae, which can

then be translated into trustworthy code written in Copilot, NASA’s
Core Flight System (cFS), Robot Operating System (ROS), and
more

https://github.com/nasa/ogma

https://github.com/nasa/ogma

https://docs.google.com/file/d/1CVHR2SHUoBpajixFfmyDch7R5rX5-Ba5/preview

© Galois, Inc.4141

© Galois, Inc.

© Galois, Inc.4242

© Galois, Inc.

Challenges
What is the best way to write a compiler to Bluespec?
● There are no industrial-grade Bluespec pretty-printers, aside from

the code used in the official Bluespec compiler
● The Bluespec compiler can’t be used as a library
● For now, we’ve forked the code in the Bluespec compiler to use in

our tool
● We should do better:

https://github.com/B-Lang-org/bsc/issues/546

https://github.com/B-Lang-org/bsc/issues/546

© Galois, Inc.4343

© Galois, Inc.

Challenges
Limited support for floating-point operations
● Basic arithmetic operations, abs, and sqrt are supported
● sin/cos, exponentiation, and logarithms not currently supported
● Could consider using floating-point IP or VGM
● Currently porting software implementations of floating-point

operations to Bluespec:
https://github.com/B-Lang-org/bsc/discussions/534

https://github.com/B-Lang-org/bsc/discussions/534

© Galois, Inc.4444

© Galois, Inc.

Copilot-Bluespec takeaways
● Copilot and Ogma are robust ecosystems for describing,

implementing, and deploying monitors.
● Bluespec is a natural fit for realizing Copilot’s style of runtime

verification in a hardware setting.
● We are continuing to reduce barriers to entry for integrating

runtime verification in high-assurance scenarios.

Copilot: https://copilot-language.github.io
Ogma: https://github.com/nasa/ogma
Copilot-Bluespec: https://github.com/Copilot-Language/copilot-bluespec

https://copilot-language.github.io
https://github.com/nasa/ogma
https://github.com/Copilot-Language/copilot-bluespec

Backup slides

© Galois, Inc.4646

© Galois, Inc.

Ogma
● Ogma: a tool for translating natural-language requirements into

runtime monitoring code
● Translates structured natural language into temporal logic formulae
● The temporal logic can then be translated into trustworthy code

written in Copilot, NASA’s Core Flight System (cFS), Robot
Operating System (ROS), and more

https://github.com/nasa/ogma

https://github.com/nasa/ogma

© Galois, Inc.4747

© Galois, Inc.

Ogma example
Requirements are expressed in structured natural language (FRETish):

scope condition component* shall* timing response*

© Galois, Inc.4848

© Galois, Inc.

Ogma example: translated to temporal logic

© Galois, Inc.4949

© Galois, Inc.

© Galois, Inc.5050

© Galois, Inc.

Ways to achieve assurance
Prove Test Monitor

 (Runtime verification)

© Galois, Inc.5151

© Galois, Inc.

The need for hardware RV
● Many critical systems run on FPGAs or ASICs

● Use case: System Theoretic Process Analyses (STPAs)
○ Methodology for designing safe systems and preventing

critical losses
○ Involve interactions between humans, software, and hardware

