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Abstract
Dependently typed languages allow programmers to state
and prove type class laws by simply encoding the laws as
class methods. But writing implementations of these meth-
ods frequently give way to large amounts of routine, boil-
erplate code, and depending on the law involved, the size
of these proofs can grow superlinearly with the size of the
datatypes involved.

We present a technique for automating away large swaths
of this boilerplate by leveraging datatype-generic program-
ming. We observe that any algebraic data type has an equiv-
alent representation type that is composed of simpler, smaller
types that are simpler to prove theorems over. By construct-
ing an isomorphism between a datatype and its represen-
tation type, we derive proofs for the original datatype by
reusing the corresponding proof over the representation type.
Our work is designed to be general-purpose and does not
require advanced automation techniques such as tactic sys-
tems. As evidence for this claim, we implement these ideas
in a Haskell library that defines generic, canonical imple-
mentations of the methods and proof obligations for classes
in the standard base library.

CCS Concepts • Software and its engineering→ Func-
tional languages; Data types and structures.

Keywords Type classes, generic programming, dependent
types, reuse
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1 Introduction
Various programming languages support combining type
classes [34], or similar features, with dependent type systems,
including Agda [11], Clean [29], Coq [25], F* [19], Idris [7],
Isabelle [14], and Lean [5]. Even Haskell, the language which
inspired the development of type classes, is moving towards
adding full-spectrum dependent types [12, 35], and deter-
mined Haskell users can already write many dependently
typed programs using the singletons encoding [13].
Type classes and dependent types together make an ap-

pealing combination since many classes come equipped with
algebraic laws that every class instance must obey. In a
simply-typed setting, checking whether a given instance
satisfies these laws is not straightforward, so these laws usu-
ally are presented as comments that the user must keep in
mind, informally, when writing code. For example, the fol-
lowing is an abridged version of Haskell’s Ord class along
with one of its laws:

-- Transitivity: if x ≤ y && y ≤ z = True,

-- then x ≤ z = True

class Ord a where

(≤) :: a → a → Bool

In an ordinary Haskell setting, this important transitivity
law languishes as an unenforceable comment, and unless
programmers are diligent, they may accidentally produce
unlawful Ord instances. With dependent types, however, the
statement of this law can be encoded in the type signature
of a class method, and anyone who defines an instance of
the class must write a proof for it, ensuring that unlawful
instances will be rejected from the get-go. For instance, one
could envision a version of Ord that bundles along the proof
of (≤)’s transitivity:

class Ord a where

(≤) :: a → a → Bool

leqTransitive :: Π (x, y, z :: a)

→ (x ≤ y) :∼: True

→ (y ≤ z) :∼: True

→ (x ≤ z) :∼: True

Unfortunately, writing proofs in class instances can be la-
borious, as many of these proofs require excessive amounts
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of boilerplate code. Even worse, the size of some proofs can
grow super-linearly in the size of the datatypes used, as the
length of the proofs can grow extremely quickly due to the
sheer number of cases one has to exhaust.
Many dependently typed languages automate the gener-

ation of boilerplate code by providing tactics, as in Coq or
Lean. While heavy use of tactics can make swift work of
many type-class proofs, they can sometimes make it tricky
to update existing code, as basic changes to the code be-
ing verified can cause theorems that rely on the code’s im-
plementation details to suddenly fail. Moreover, not every
dependently typed language is equipped with an advanced
tactic system. Porting tactic-rich proofs in one language to a
different language that lacks them can be nontrivial, espe-
cially if the tactics automate away key steps in the proofs
behind the scenes.

Our work aims to introduce a general technique for elimi-
nating boilerplate code for type class laws that does not rely
on tactics as the primary vehicle for proof automation. In-
stead, we adopt techniques from the field of datatype-generic
programming—in particular, a dialect of generic program-
ming that makes use of pattern functors [17, 20, 36]. We lever-
age pattern functors to decompose proofs into the smallest
algebraic components possible, compose larger proofs out of
these verified building blocks, and then define instances for
full datatypes by reusing the proofs over the pattern functor
types.
In fact, we can package up this style of code reuse into

generic default implementations of type class laws. These
defaults are flexible enough to work over any data type that
has an equivalent representation type built out of pattern
functors. In general, there may be many ways to define an in-
stance such that it abides by the class’s laws (see Section 3.3),
but generic defaults à la pattern functors allow programmers
to abstract out canonical, “off-the-shelf” implementations
that work over a wide variety of data types. These canonical
defaults are highly useful—for instance, the n-body simu-
lation in Vazou et al. [31] uses a canonical instance of the
Monoid class—so they receive the most attention in our work.
In particular, the primary contributions of this paper are:

• We show how to derive implementations of type-class
methods and laws with the pattern functor approach
to datatype-generic programming (Section 3).
• We provide the first datatype-generic approach to ver-
ifying class laws that accommodates existing instances
(not written in any special style), while still providing
substantial proof automation (Section 4).
• We present a prototype implementation of these ideas
and evaluate the lines of code required and impact on
compile time (Section 5).

Our prototype implementation is a Haskell library, which
we call verified-classes. The verified-classes library
provides generic implementations of laws for several type

classes in Haskell’s base library (previously asserted as un-
verified comments). We additionally consider what an imple-
mentation of these ideas would look like in other languages
in Section 6.

2 Background
Dependent types offer a vehicle for verifying type class laws
by simply defining additional class methods with proof obli-
gations. In this section, we flesh out a complete example of
a verified type class and demonstrate how one can define in-
stances for it using progressively larger datatypes. As the size
of the datatypes increases, it will become apparent that there
is a problem of scale, since the number of cases required to
complete the corresponding proofs increases quadratically.

2.1 A Tour of Verified Classes
The goal of our work is to present a technique that can be
ported to any dependently typed programming language
that supports type classes (a topic that we will revisit in
Section 6). In pursuit of this goal, in this paper we adopt
the convention of using a minimalistic language that resem-
bles Haskell. We say “resembles Haskell” rather than “is
Haskell” since, in practice, our evaluation uses the single-
tons technique [13] to encode dependent types in Haskell.
This process is quite straightforward, and we invite the inter-
ested reader to Appendix A.1 [21] for the full details of how
this works. However, the singletons encoding introduces a
certain degree of syntactic noise, so for the sake of presen-
tation clarity, we use a syntax that is closer to most other
dependently typed languages. (One can imagine that we are
writing code in a hypothetical Dependent Haskell [12].)

2.1.1 Classes
As a running example, we use a minimal version of the Ord
type class, which describes datatypes that support boolean-
returning comparison operations:

class Eq a ⇒ Ord a where

(≤) :: a → a → Bool

Where Eq and Bool are defined to be:

class Eq a where data Bool = False | True

(==) :: a → a → Bool

In order for a datatype with an Ord instance to be considered
verified, we require that the implementation of (≤) must
behave like a total order. That is to say, it must satisfy the
following four laws:

Reflexivity ∀x . x ≤ x
Transitivity ∀x ,y, z. x ≤ y ≤ z ⇒ x ≤ z

Antisymmetry ∀x ,y. x ≤ y ∧ y ≤ x ⇒ x = y
Totality ∀x ,y. x ≤ y ∨ y ≤ x

Using dependent types, we encode these laws as proof meth-
ods of a type class. We define a new class, VOrd (short for
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“verified Ord”), to represent the group of Ord instances that
are known to be lawful total orders:1

class Ord a ⇒ VOrd a where

leqReflexive :: Π (x :: a) → (x ≤ x) :∼: True

leqTransitive

:: Π (x, y, z :: a)

→ (x ≤ y) :∼: True → (y ≤ z) :∼: True

→ (x ≤ z) :∼: True

leqAntisymmetric

:: Π (x, y :: a)

→ (x ≤ y) :∼: True → (y ≤ x) :∼: True

→ (x == y) :∼: True

leqTotal

:: Π (x, y :: a)

→ Either ((x ≤ y) :∼: True)

((y ≤ x) :∼: True, (x == y) :∼: False)

The methods of VOrd translate the laws above into type
signatures, making use of the propositional equality type
(:∼:), which reflects the judgment that two types are equal
into a type of its own:

data (:∼:) :: ∀ k. k → k → Type where

Refl :: a :∼: a

For the sake of making these type signatures a little more
brief, we introduce an auxiliary definition that reflects True-
valued boolean judgments into types:

data So :: Bool → Type where

Oh :: So True

Using So, we can tighten up the presentation of VOrd some-
what:

class Ord a ⇒ VOrd a where

leqReflexive :: Π (x :: a) → So (x ≤ x)

leqTransitive

:: Π (x, y, z :: a)

→ So (x ≤ y) → So (y ≤ z) → So (x ≤ z)

leqAntisymmetric

:: Π (x, y :: a)

→ So (x ≤ y) → So (y ≤ x) → So (x == y)

leqTotal

:: Π (x, y :: a)

→ Either (So (x ≤ y))

(So (y ≤ x), So (not (x == y)))

2.1.2 Examples of Instances
To demonstrate VOrd in action, we first define an extremely
simple datatype, along with accompanying instances of Eq
and Ord:

1Alternatively, we could inline the methods of VOrd directly into Ord. We
choose not to do so here since many languages, such as Haskell, make use
of certain unlawful instances, such as the Ord instances for Floats and
Doubles.

data T a = MkT1 a

instance Eq a ⇒ Eq (T a) where

(MkT1 x) == (MkT1 y) = (x == y)

instance Ord a ⇒ Ord (T a) where

(MkT1 x) ≤ (MkT1 y) = x ≤ y

Unsurprisingly, this implementation of (≤) comprises a total
order. We verify this claim by implementing a VOrd instance
for T like so:

instance VOrd a ⇒ VOrd (T a) where

leqReflexive (MkT1 x)

| Oh ← leqReflexive x = Oh

leqTransitive (MkT1 x) (MkT1 y) (MkT1 z) Oh Oh

| Oh ← leqTransitive x y z Oh Oh = Oh

leqAntisymmetric (MkT1 x) (MkT1 y) Oh Oh

| Oh ← leqAntisymmetric x y Oh Oh = Oh

leqTotal (MkT1 x) (MkT1 y) =

case leqTotal x y of

Left Oh → Left Oh

Right (Oh, Oh) → Right (Oh, Oh)

The implementations of these proofs outline the basic ap-
proach to verifying algebraic properties. For each property
we wish to prove, we proceed by cases on T (encoded us-
ing pattern matching), appeal to our induction hypothesis
(encoded using recursion), and then complete the proof.

This instance was relatively painless to write as there
was only one case to consider, the MkT1 constructor of T.
However, the size of the proofs grows noticeably when we
increase the size of T. For instance, consider what happens
when we add another constructor:

data T a = MkT1 a | MkT2 a

First, we must adjust our Eq and Ord instances accordingly.
We pick the convention that MkT1 is always less than MkT2:

instance Eq a ⇒ Eq (T a) where

(MkT1 x) == (MkT1 y) = (x == y)

(MkT2 x) == (MkT2 y) = (x == y)

(MkT1 _) == (MkT2 _) = False

(MkT2 _) == (MkT1 _) = False

instance Ord a ⇒ Ord (T a) where

(MkT1 x) ≤ (MkT1 y) = (x ≤ y)

(MkT2 x) ≤ (MkT2 y) = (x ≤ y)

(MkT1 _) ≤ (MkT2 _) = True

(MkT2 _) ≤ (MkT1 _) = False

Next, now that the code that we’re verifying has changed,
we must synchronize the accompanying proofs in the VOrd
instance. We start with the proof of reflexivity:

instance VOrd a ⇒ VOrd (T a) where

leqReflexive (MkT1 x)

| Oh ← leqReflexive x = Oh

leqReflexive (MkT2 x)

| Oh ← leqReflexive x = Oh

...
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Updating leqReflexive ended up not requiring that much
effort, as we only needed to have one extra case for the addi-
tional constructor MkT2. Updating leqTransitive, however,
requires more effort:

instance VOrd a ⇒ VOrd (T a) where

...

leqTransitive t t' t'' Oh Oh =

case (t, t', t'') of

(MkT1 x, MkT1 y, MkT1 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(MkT2 x, MkT2 y, MkT2 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(MkT1 _, _, MkT2 _) = Oh

...

In addition to requiring an extra case for the combination of
arguments where all of them are MkT2, we now require an
additional case to cover the two combinations of arguments
where the first argument is MkT1 and the third argument is
MkT2. The four other possible combinations of arguments
were ruled out by dependent pattern matching, as the type
system concluded that they were impossible-to-reach cases
(for example, if t = MkT2 _ and t'' = MkT1 _, then it can-
not be the case that t ≤ t'' is True). In Haskell, we do not
need to write these cases out at all, although some other
languages may require explicit “absurd” cases (e.g., using the
() pattern in Agda).

Having to add one more case might not seem that bur-
densome, but the number of cases one has to supply for
leqTransitive grows quickly as we add more and more
constructors. For example, if we added a third constructor
MkT3 to T, then after updating the Eq and Ord instances (us-
ing the convention that MkT1 is always less than MkT2, and
MkT2 is always less than MkT3), this is what the proof of
transitivity would become:

instance VOrd a ⇒ VOrd (T a) where

...

leqTransitive t t' t'' Oh Oh =

case (t, t', t'') of

(MkT1 x, MkT1 y, MkT1 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(MkT2 x, MkT2 y, MkT2 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(MkT3 x, MkT3 y, MkT3 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(MkT1 _, _, MkT2 _) = Oh

(MkT1 _, _, MkT3 _) = Oh

(MkT2 _, _, MkT3 _) = Oh

...

This time, we have six cases! If we add a fourth constructor,
we would have 10 cases, and if we add a fifth constructor, we
would have fifteen cases. In general, if we had n constructors,
then leqTransitivewould require n+

(n
2
)
= 1

2 (n
2+n) cases,

class Generic a where

type Rep a :: Type

from :: a → Rep a

to :: Rep a → a

data U1 = MkU1

newtype K1 c = MkK1 c

data a :*: b = a :**: b

data a :+: b = L1 a | R1 b

Figure 1.A slightly simplified presentation of the definitions
from Haskell’s GHC.Generics library, on which we base our
approach to datatype-generic programming.

which grows quadratically! This has the potential to make
scaling up proofs extremely tiresome.
Perhaps even more troublesome than the size of these

proofs themselves is the fact that most of these cases are
sheer boilerplate. For instance, leqTransitive follows a
very predictable pattern. For combinations of arguments
where all the constructors are the same, recurse, and for
combinations where there are different constructors, it must
be the case that the first argument is less than or equal to the
third argument, so immediately return Oh. This is routine
code that is begging to be automated with a proof-reuse
technique.

3 Verified Instances, Generically
Having seen the tedium of manually constructing certain
proofs, we present a solution. Notably, our solution does not
require a tremendous amount of support from the language
itself (in terms of tactics or metaprogramming). Instead, we
rely on techniques that could be ported to any dependently
typed programming language that, at a minimum, supports
type classes.2

We adapt an approach from the field of datatype-generic
programming where we take an algebraic datatype and con-
struct a representation type which is isomorphic to it. The
representation type itself is a composition of smaller pattern
functor datatypes that encode primitive “building blocks” of
other datatypes, such as products, sums, and individual fields.
We also establish a type class for witnessing the isomorphism
between a datatype and its representation type [17, 20, 36].
By leveraging these tools, we shift the burden of proof

from the original datatype (which may be arbitrarily com-
plex) to the handful of simple pattern functor types that
constitute its representation type. This way, we are able to
prove properties for a wide range of possible datatypes by
simply proving the same properties for a finite number of
“building block” types.

3.1 A Primer on Datatype-Generic Programming
To build up representation types, we build upon the tech-
niques from Magalhães et al. [17], which influenced the de-
sign of Haskell’s popular GHC.Generics library. Figure 1
2It is possible to further reduce the amount of code needed by generat-
ing boilerplate code with metaprogramming techniques (e.g., Template
Haskell [24]), but support for metaprogramming is not a strict requirement.
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presents the central definitions used in this style of datatype-
generic programming.
The Generic type class is the focal point of the library.

A datatype with a Generic instance comes equipped with
a Rep, the representation type, and functions from and to
which witness the isomorphism between the representation
type and the original datatype. The Rep type is always some
combination of the following pattern functor types3:

1. The U1 type represents constructors with no fields.
2. The K1 type represents a single field in a constructor.
3. The (:*:) type (pronounced “product”) represents

two consecutive fields in a constructor.
4. The (:+:) type (pronounced “sum”) represents the

choice between two consecutive constructors.
This is best explained with an example, so recall this ver-

sion of the T data type from Section 2.1.2:

data T a = MkT1 a | MkT2 a

We define its canonical Generic instance like so:
instance Generic (T a) where

type Rep (T a) = K1 a :+: K1 a

from (MkT1 x) = L1 (MkK1 x)

from (MkT2 x) = R1 (MkK1 x)

to (L1 (MkK1 x)) = MkT1 x

to (R1 (MkK1 x)) = MkT2 x

Here, we see that because T has two constructors, MkT1 and
MkT2, the (:+:) type is used once to represent the choice
between them. The field of type a in each constructor is, in
turn, represented with a K1 type. The same sort of pattern
would follow if we added more constructors to T. For exam-
ple, here is how the Rep instance would appear if there were
three constructors 4:

data T a = MkT1 a | MkT2 a | MkT3 Bool

instance Generic (T a) where

type Rep (T a) = K1 a :+: (K1 a :+: K1 Bool)

...

Each constructor corresponds to another use of (:+:) to
denote another choice of constructor. Despite the size of the
T type increasing, the number of distinct datatypes in its Rep
has not changed, which is an important property.

The implementations of from and to are are entirely me-
chanical to implement and constitute one of the few sources
of boilerplate in this style of datatype-generic programming.
Languages like Haskell offer a metaprogramming facility
(deriving Generic) for generating this boilerplate, although
it can just as well be written by hand.
3There is another pattern functor type, M1, which is used to attach metadata
such as constructor names, fixities, etc. For the sake of simplicity, we leave
it out of the discussion in this section, but we revisit it in 5.1.
4Although (:+:) is right-associative, we have added explicit parentheses
in this Rep instance for clarity. In general, a canonical Generic instance
balances nested uses of (:+:) and (:*:) so that it is always possible to
go from the root of the representation type to a leaf in logarithmic (rather
than linear) time.

3.2 Verifying Generic

While Generic is convenient for quickly coming up with
representation types, it alone isn’t enough for our needs,
as we need to be able to prove that from and to form an
isomorphism. In pursuit of that goal, we define a subclass of
Generic with two proof methods that state that from and
to are mutual inverses:

class Generic a ⇒ VGeneric a where

t◦f :: Π (z :: a) → to (from z) :∼: z

f◦t :: Π (r :: Rep a) → from (to r) :∼: r

Like Generic, instances of VGeneric are predictably straight-
forward. Here is an example of instance for T (with two
constructors):

instance VGeneric (T a) where

t◦f (MkT1 _) = Refl

t◦f (MkT2 _) = Refl

f◦t (L1 (MkK1 _)) = Refl

f◦t (R1 (MkK1 _)) = Refl

The implementations of t◦f and f◦t are the other sources
of boilerplate besides from and to. For this reason, we expose
TemplateHaskell [24] functionality in the verified-classes
library to automatically generate VGeneric instances.

The class VGeneric plays double duty in the style of proofs
we write. One of its roles is to serve as a tool for “cancelling
out” compositions of from and to, as the need often arises to
simplify to (from z) into z or from (to r) into r when
reasoning about generic implementations of class methods. It
also serves the role of ensuring that the Generic instance we
are using to go between a datatype and its Rep is a legitimate
isomorphism. Even if the Generic instance we are using is
generated behind the scenes (say, with deriving Generic),
we can use VGeneric as an additional sanity check to ensure
that the Generic automation is functioning properly.

3.3 Orderings on Representation Types
We have now identified the four basic datatypes in Figure 1
that can be composed in various ways to form representa-
tion types in Generic instances, as well as a mechanism to
verify that the choice of representation type truly forms an
isomorphism. The next step is to utilize these tools to write
verified Ord instances, and by doing so, demonstrate how
to obtain a valid total ordering for any algebraic data type
using this technique.

First, we define a generic version of (≤) by defining Ord
instances for the pattern functor types. The instances for U1
and K1 are quite straightforward:

instance Ord U1 where

MkU1 ≤ MkU1 = True

instance Ord c ⇒ Ord (K1 c) where

(MkK1 x) ≤ (MkK1 y) = (x ≤ y)
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It is worthwhile to take the time to reflect on what these in-
stances mean from a datatype-generic programming perspec-
tive. The instance for U1 abstracts the idea that a constructor
with no fields is always less than or equal to itself, and the
instance for K1 abstracts the idea that for constructors with
fields, the comparing them amounts to comparing the con-
stituent fields. The idea of “comparing the constituent fields”
becomes more precise when we define the Ord instance for
(:*:):

instance (Ord a, Ord b) ⇒ Ord (a :*: b) where

(x1 :**: y1) ≤ (x2 :**: y2) =

if (x1 == x2) then (y1 ≤ y2) else (x1 ≤ x2)

This instance abstracts the idea that we use a lexicographic
ordering on products. That is, we check the first fields of
each constructor, and if they are the same, skip them and
proceed to the next fields. If they are not the same, return
the result of comparing them. Importantly, this approach
scales to any number of fields, as this instance iterates over
nested uses of (:*:) to process the remaining fields.

Finally, we encode how to compare multiple constructors
with (:+:):

instance (Ord a, Ord b) ⇒ Ord (a :+: b) where

(L1 x) ≤ (L1 y) = (x ≤ y)

(R1 x) ≤ (R1 y) = (x ≤ y)

(L1 _) ≤ (R1 _) = True

(R1 _) ≤ (L1 _) = False

This instance abstracts the convention that constructors de-
fined earlier in a datatype’s definition are always less than
constructors defined later. Moreover, comparing two of the
same constructor amounts to comparing their respective
fields.

Defining these four Ord instances for the pattern functor
types means that any datatype equipped with a Generic
instance can derive an Ord instance cheaply. This is because
it is possible to define an implementation of (≤), which we
call genericLeq, that works for any instance of Generic:

genericLeq :: (Generic a, Ord (Rep a))

⇒ a → a → Bool

genericLeq x y = (from x ≤ from y)

instance Ord a ⇒ Ord (T a) where

(≤) = genericLeq

This works because we can define an order over a datatype in
terms of the ordering on its representation type, to which it
is isomorphic. Previously, we would have had to implement
Ord once per datatype, with each implementation possibly
requiring several cases.With datatype-generic programming,
we can reduce the implementation burden to defining (≤)
for each pattern functor (a one-time cost), defining a Generic
instance per datatype (which are simple and can be auto-
mated), and defining an Ord instance per datatype using
genericLeq (which only requires one line per type).

It is worth clarifying that genericLeq is “generic” in the
sense that it provides a canonical implementation of a total
ordering on datatypes. It is canonical in the sense that it
is law-abiding and works for a wide variety of datatypes,
even if they have different numbers of constructors or fields.
That is not to say that this is the only valid total order in
existence. For instance, we could choose a reverse lexico-
graphic ordering that treats rightmost constructors as always
being less than leftmost constructors. We could certainly
accommodate datatypes with this ordering by inventing a
ReverseLexicoOrd class and defining appropriate instances
of it for the pattern functor types, but in general, there might
be arbitrarily many law-abiding implementations of a class’s
methods.
In this work, we are primarily concerned with canoni-

cal implementations of class methods, as they reflect “off-
the-shelf” solutions that programmers reach for when they
want to define instances for their data types in a cheap-and-
cheerful manner. Therefore, we restrict our focus to one
generic default per class method, even though many more
legitimate defaults may exist.

3.4 Proofs over Representation Types
Just as we defined a generic version of (≤) over pattern
functors, so too can we define generic versions of the total
order laws by defining VOrd instances. Here is a subset of
the VOrd instance for sums:

instance (VOrd a, VOrd b) ⇒ VOrd (a :+: b) where

...

leqTransitive s s' s'' Oh Oh =

case (s, s', s'') of

(L1 x, L1 y, L1 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(R1 x, R1 y, R1 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

(L1 _, _, R1 _) = Oh

...

Astute readers will notice that this is the exact same as a
VOrd instance that we defined in Section 2.1.2. However,
note that this is the only instance of VOrd that we need to
provide for a sum type. Moreover, (:+:) is in some ways
the “simplest” possible sum type, so this allows us to manage
their complexity much more than if we were directly writing
a VOrd instance for a datatype with many constructors.

Another interesting VOrd instance is that for K1, as these
are found at the leaves of a tree of pattern functor types:

instance VOrd c ⇒ VOrd (K1 c) where

...

leqTransitive k k' k'' Oh Oh =

case (k, k', k'') of

(MkK1 x, MkK1 y, MkK1 z)

| Oh ← leqTransitive x y z Oh Oh = Oh

...
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In terms of code, this instance is quite simple, as it simply
uses the underlying VOrd c instance to complete the proof
of transitivity. What may be less obvious is that the c type
no longer contains any pattern functor types, as this is point
where we switch to the fields of the datatype’s constructors
themselves. Put another way, the generic computation “bot-
toms out” at occurrences of K1—or, if a constructor has no
fields, it bottoms out at U1.

In addition to (:+:) and K1, we prove the total order laws
for the remaining two pattern functor types. Once this is
done, we obtain for free proofs that any Rep in a Generic
instance is a valid total ordering, as we can compose these
four instances as desired to obtain a valid VOrd instance.
This is crucial, as it ensures that this technique scales up to
whatever size of datatype that we might envision.

3.5 Carrying Over Proofs
Given a VOrd instance for a representation type, how can
we relate it back to the original datatype? This is where
the VGeneric class becomes important. VGeneric gives us
precisely enough power to take a VOrd proof for one type
and reuse it for the other type, in either direction.

As a first example, we demonstrate how to define a generic
implementation of leqTransitive for any type that imple-
ments a VGeneric instance. Intuitively, we want to show
that a total order on a is transitive by appealing to the fact
that the total order on Rep a (to which a is isomorphic) is
transitive. Computationally, this amounts to taking each of
the three arguments of type a, converting them to their Rep
counterparts with from, and invoking leqTransitive on
them. The general structure of this function looks like this:

defaultLeqTransitive

:: Π (x, y, z :: a)

→ (VGeneric a, VOrd (Rep a))

⇒ So (x ≤ y) → So (y ≤ z) → So (x ≤ z)

defaultLeqTransitive x y z xLeqY yLeqZ =

leqTransitive (from x) (from y) (from z)

xLeqY yLeqZ

This would almost typecheck save for one issue: the final two
arguments we are attempting to pass to leqTransitive are
of types So (x ≤ y) and So (y ≤ z), but since the first
three arguments involve from, this requires that the last two
arguments should actually have the types So (from x ≤
from y) and So (from y ≤ from z), respectively.
What goes wrong in this example? The problem is that

while we attempt to appeal to the transitivity of representa-
tion types, the type signature does not reflect this. A proof
that x ≤ y, for instance, does not help much when the proof
that we actually care about involves from x and from y. In
other words, we need to find some way to relate the behavior
of (≤) over type a to the behavior of (≤) over type Rep a.
There is a crude trick available that seemingly gets the

job done: we can assume that the implementations of (≤)

for a and Rep a coincide exactly. That is to say, instead of
using (≤) in the type signature of defaultLeqTransitive,
which is not precise enough, we instead use genericLeq
from Section 3.3. Recall that genericLeq x y = (from x
≤ from y), which is exactly what we need here. Therefore,
we need only change the type of defaultLeqTransitive
slightly:

defaultLeqTransitive

:: Π (x, y, z :: a)

→ (VGeneric a, VOrd (Rep a))

⇒ So (genericLeq x y) → So (genericLeq y z)

→ So (genericLeq x z)

This suffices to make defaultLeqTransitive typecheck,
but it comes with a somewhat steep price, as it requires that
(≤) be implemented exactly the same way as genericLeq.
We will revisit this limitation in Section 4, and show how to
overcome it. For the remainder of this section, it suffices to
assume that (≤) and genericLeq are definitionally equal.
We use this trick to define default implementations of

the other laws in VOrd as well. Using these defaults, we can
derive the total order laws much more easily than we could
before. For example, showing that T has a lawful total order
now amount to very little code:

instance VOrd a ⇒ VOrd (T a) where

...

leqTransitive = defaultLeqTransitive

...

The generic defaults for VOrd ended up not making use
of any specific laws for VGeneric, but this is not always the
case for every class. A more complicated example is found
in Figure 2, which defines the Semigroup class for datatypes
supporting binary, associative operations. In order to define
a generic proof that this operation is associative, we must
make use of the fact that from ◦ to = id:

defaultAssociative

:: Π (x, y, z :: a)

→ (VGeneric a, VSemigroup (Rep a))

⇒ (genericAppend x (genericAppend y z)) :∼:

(genericAppend (genericAppend x y) z)

defaultAssociative x y z

| Refl ← f◦t (from x <> from y)

, Refl ← f◦t (from y <> from z)

= associative (from x) (from y) (from z)

Using f◦t as a lemma guides the typechecker to realize that
the conclusion reduces to (to (from x <> (from y <>
from z))) :∼: (to ((from x <> from y) <> from z)).
From there, appealing to the associativity of (<>) causes both
sides of the equation to become equal. This example demon-
strates that the VGeneric laws not only give us peace of mind
that the conversions to and from a representation type are
structure-preserving, but that they are useful computational
tools for deriving generic proofs.
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class Semigroup a where

(<>) :: a → a → a

class Semigroup a ⇒ VSemigroup a where

associative :: Π (x, y, z :: a)

→ (x <> (y <> z)) :∼: ((x <> y) <> z)

genericAppend

:: (Generic a, Semigroup (Rep a))

⇒ a → a → a

genericAppend x y =

to (from x <> from y)

Figure 2. The Semigroup class, its associativity law (in VSemigroup), and a generic implementation of (<>).

4 More Permissive Generic Defaults
In Section 3, we demonstrated how datatype-generic pro-
gramming could derive verified proofs of type class laws in
addition to the implementations of the class methods them-
selves. But the utility of these proofs is still somewhat lim-
ited. When defining generic defaults for laws, we assumed
(in Section 3.4) that the implementation of the class meth-
ods involved were exactly the same as the datatype-generic
versions. While this worked out well enough for the one
Ord/VOrd example we used in Section 3.5, this approach has
a serious flaw: it cannot work if the implementation of (≤)
is anything other than genericLeq. As a consequence, there
are large swaths of Ord instances in the wild that cannot ben-
efit from generic proofs, since their Ord instances weren’t
designed to accommodate it.
With a little modification, however, we can make the

generic proofs more inclusive. The key insight is that the
implementation of (≤) doesn’t need to be the exact same
as leqGeneric—it only needs to behave the same. In other
words, all we need to be able to show that x ≤ y is equiva-
lent to leqGeneric x y for all x and y. We factor out this
task into its own type class, GOrd (short for “generic Ord”):

class (Generic a, Ord a, Ord (Rep a)) ⇒ GOrd a where

genericLeqC :: Π (x, y :: a)

→ (x ≤ y) :∼: (genericLeq x y)

defaultLeqTransitive

:: Π (x, y, z :: a)

→ (VGeneric a, VOrd (Rep a), GOrd a)

⇒ So (x ≤ y) → So (y ≤ z) → So (x ≤ z)

defaultLeqTransitive x y z xLeqY yLeqZ

| Refl ← genericLeqC x y

-- To conclude that

-- (So (x ≤ y)) equals (So (genericLeq x y))

, Refl ← genericLeqC y z

-- To conclude that

-- (So (y ≤ z)) equals (So (genericLeq y z))

, Refl ← genericLeqC x z

-- To conclude that

-- (So (x ≤ z)) equals (So (genericLeq x z))

= leqTransitive (from x) (from y) (from z)

xLeqY yLeqZ

In order to use defaultLeqTransitive, one must now pro-
vide an appropriate instance of GOrd. For datatypes like T
where (≤) = genericLeq, defining a GOrd instance is a triv-
ial task, since genericLeqC can be implemented simply as
λ_ _ → Refl. For other datatypes, more work is required,
although the amount of code one has to write to implement
GOrd generally pales in comparison to the amount of code
saved by using the generic proofs in the first place. As one
example, here is how one could use generic proofs for a Bool
datatype whose Ord instance is defined in a non–datatype-
generic fashion:

instance Ord Bool where

True ≤ True = True

False ≤ False = True

False ≤ True = True

True ≤ False = False

instance Generic Bool where

type Rep Bool = ...

from = ...

to = ...

instance GOrd Bool where

genericLeqC True True = Refl

genericLeqC False False = Refl

genericLeqC False True = Refl

genericLeqC True False = Refl

instance VOrd Bool where

...

leqTransitive = defaultLeqTransitive

...

There are a number of situations where this more permissive
form of generic defaults could be desirable. We consider
examples of such situations in the remainder of this section.

4.1 Proofs for Instances Defined Elsewhere
It is often the case that one wishes to prove properties of
datatypes for which the implementation of their instances
is unchangeable. For instance, a datatype instance might be
defined in a library over which the proof author has no con-
trol, such as Haskell’s base library. An example of this is the
Ord instance for Bool, which base defines in much the same
way as it is presented in Section 4, without using datatype-
generic programming. 5 It is unlikely that the maintainers of

5Strictly speaking, this Ord Bool instance is defined using the deriving
mechanism, although the generated code would be similar in structure.
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base will change the implementation of this instance just to
make verifying it easier, but thankfully, this is not an issue in
practice. Having permissive defaults for VOrd enables users
to write generic proofs for it without having to patch the
source code of base.

The verified-classes library uses this technique in var-
ious places to help write proofs for data types in base, includ-
ing proofs of the laws for the standard list type’s Eq instance
and the laws for the Compose type’s Applicative instance,
where Compose is defined as follows:

newtype Compose f g a = MkCompose (f (g a))

In the particular case of Compose, being able to use generic
defaults is a big win in terms of code size. Writing an in-
stance of GApplicative for Compose (which gives rise to a
VApplicative instance that verifies the Applicative laws)
only requires 109 lines of code.Writing the full VApplicative
proofs out by hand, however, would require 280 lines of code.

4.2 Performance-Critical Code
There are some situations in which compilers are unable to
optimize away the runtime overhead that datatype-generic
programming can introduce [16, 18]. For these performance-
sensitive situations, this technique allows one to define class
methods in a performant way, without datatype-generic pro-
gramming, while still benefitting from the proof automation
that it provides. Even if the proofs themselves are defined us-
ing datatype-generic programming, as long as they are used
in a runtime-irrelevant fashion, they do not risk introducing
extra runtime costs.

4.3 Working with Standards
Sometimes, the implementations of class methods are ex-
pected to adhere to a common standard. For instance, con-
sider the Traversable class from the Haskell base library:

class Traversable t where

traverse :: Applicative f

⇒ (a → f b) → t a → f (t b)

The documentation for Traversable6 requires that imple-
mentations of traversemust satisfy traverse MkIdentity
= MkIdentity, where Identity must be defined as the fol-
lowing datatype with this Applicative instance:

newtype Identity a = MkIdentity a

instance Applicative Identity where

pure x = MkIdentity x

(MkIdentity f) <*> (MkIdentity x) =

MkIdentity (f x)

While this Applicative Identity instance is convenient
for specifying the Traversable laws, it enforces very partic-
ular implementations of pure and (<*>) that do not datatype-
generic programming techniques. Moreover, Identity is a
6https://hackage.haskell.org/package/base-4.12.0.0/docs/Prelude.html#t:
Traversable

very commonly used datatype in the Haskell ecosystem in
its own right, so it is conceivable that one may wish to verify
its Applicative instance. It would be a shame if we could
not verify this instance generically simply because its docu-
mentation required that it be implemented in a certain way.

Fortunately, we do not have to sacrifice convenience in the
name of standardization. Instead, we simply define generic
defaults for VApplicative by leveraging a GApplicative
class. This way, deriving proofs of the Applicative laws
for Identity is tantamount to defining a GApplicative
Identity instance, which is not challenging. Indeed, this is
the approach that the verified-classes library adopts.

5 Evaluation
We demonstrate the effectiveness of the techniques in the pa-
per by implementing them in a library, verified-classes.
This library demonstrates the practical utility of these ideas
by finding as many type classes with unchecked proof obliga-
tions as possible from Haskell’s standard base package and
defining generic versions of each law. It also offers insight
into the compile-time performance of writing proofs in this
style.

5.1 The verified-classes Library
Figure 3 categorizes every type class from base for which
verified-classes implements generic versions of its as-
sociated laws. 7 The classes in this figure are divided into
two groups: classes whose argument is of kind Type, and
classes whose argument is of kind Type → Type. The for-
mer groups of classes are handled with the Genericmachin-
ery introduced in Section 3.1, whereas the latter group of
classes are handled by a slight variation of Generic, called
Generic1. Generic1 features mostly cosmetic changes from
Generic to support datatypes of kind Type → Type:

class Generic1 (f :: Type → Type) where

type Rep1 f :: Type → Type

from1 :: f a → Rep1 f a

to1 :: Rep1 f a → f a

Just as Generic has a verified counterpart in VGeneric, so
too does there exist a VGeneric1 class to ensure that a
Generic1 instance’s implementations of from1 and to1 form
a valid isomorphism:

class Generic1 f ⇒ VGeneric1 f where

t◦f1 :: ∀ a. Π (z :: f a)

→ to1 (from1 z) :∼: z

f◦t1 :: ∀ a. Π (r :: Rep1 f a)

→ from1 (to1 r) :∼: r

7Note that there is no AbelianSemigroup class directly in base, but since
several Semigroup instances end up being commutative (or Abelian) in
practice, we opted to include AbelianSemigroup as its own class for the
sake of completeness.
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Class name Argument kind Laws Pattern functors SLoC
AbelianSemigroup Type 1 V1, U1, K1, M1, (:*:) 50
Alternative Type → Type 3 U1, M1, (:*:), Rec1, (:.:) 173
Applicative Type → Type 5 U1, K1, M1, (:*:), Rec1, (:.:) 504
Eq Type 3 V1, U1, K1, M1, (:*:), (:+:) 154
Functor Type → Type 2 V1, U1, K1, M1, (:*:), (:+:), Par1, Rec1, (:.:) 167
Monad Type → Type 3 U1, M1, (:*:), Par1, Rec1 350
MonadPlus Type → Type 2 U1, M1, (:*:), Rec1 138
MonadZip Type → Type 2 U1, M1, (:*:), Par1, Rec1 343
Monoid Type 2 U1, K1, M1, (:*:) 94
Ord Type 4 V1, U1, K1, M1, (:*:), (:+:) 232
Semigroup Type 1 V1, U1, K1, M1, (:*:) 105
Traversable Type → Type 3 V1, U1, K1, M1, (:*:), (:+:), Par1, Rec1, (:.:) 591

Figure 3. Every class from Haskell’s base library for which verified-classes offers generic defaults. (The pattern functors
V1, M1, Par1, Rec1, and (:.:) are explained in Section 5.1.)

To convey an approximate sense of how much effort the
generic implementations of each class’s proofs requires, Fig-
ure 3 includes three metrics. The numbers of laws that each
class has, as well as the source lines of code (SLoC) involved
in the generic implementation, give a rough idea of how
“complex” the proofs are for each class. For instance, veri-
fiying Applicative’s five laws takes 454 more SLoC than
AbelianSemigroup’s one law, which supports the idea that
Applicative requires more work than AbelianSemigroup
to verify.
The SLoC totals for some of these classes appear to be

surprisingly high, and that is simply because the proofs for
these classes can become surprisingly long-winded. Know-
ing this can instill an appreciation for how many SLoC one
saves by using these generic defaults. As one example, the
VTraversable instance for (:*:) alone takes about 110
SLoC. If one were to write a VTraversable instance by hand
for a datatype with n + 1 fields, then it would take approx-
imately 110n SLoC just to write the parts of the proofs to
handle the fields alone!

Also included in Figure 3 are the pattern functors that the
generic implementations of each class implements. Besides
being a rough metric for how complex a class’s proofs are,
seeing which pattern functors each class supports gives a
sense of how widely applicable each generic default is. For
instance, it is not clear how one would generically write
a Semigroup instance for (:+:), since one would have to
arbitrarily choose between biasing towards L1 or R1. As a
result, verified-classes’s generic Semigroup implemen-
tation does not support sum types. Other defaults are more
obvious. For instance, the generic implementations of Eq,
Functor, Ord, and Traversable mirror a similar strategy
that GHC uses to generate code when these classes are placed
in deriving clauses.

Note that Figure 3 lists some pattern functors that were
not included in the simplified presentation in 1. Briefly, they
are:

• V1: represents datatypes with no constructors.
• M1: only exists to bundle metadata, such as constructor
names and fixities.
• Par1: represents occurrences of the last type parameter
(Generic1 only).
• Rec1: represents occurrences of a type constructor
applied to the last type parameter (Generic1 only).
• (:.:): represents occurrences of the composition of
multiple type constructors applied to the last type pa-
rameter (Generic1 only).

5.2 Compilation Time Results
While deriving proofs with datatype-generic programming
saves authors fromwriting many lines of code, one may won-
der if there is a tradeoff between the size of the source code
and the time it takes to compile a program. The proofs in this
paper can be deceptively small, as they are actually doing
quite a lot of work behind the scenes. In this section, we
attempt to quantify the amount of work being done by mea-
suring how long it takes to compile the verified-classes
library as well as some test programs that are built on top
of verified-classes. Our measurements were performed
using version 8.6.3 of the Glasgow Haskell Compiler (GHC)
on a 4-core i5-4670 (3.4GHz, 8GB) machine, collecting the
times reported by GHC’s -ddump-timings flag.

5.2.1 Library Timing Results
Figure 4 contains timing results for compiling eachmodule in
verified-classes that defines a type class with proof obli-
gations. Each module was compiled with GHC’s three differ-
ent optimization levels, -O0 (no optimization), -O1 (moderate
optimization), and -O2 (max optimization), to give a sense of
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Figure 4. The time it takes to compile each module in the
verified-classes that defines a verified type class along
with generic default implementations of each proof, where
-O0 through -O2 are the different levels of optimization.

how different settings contribute to the overall compilation
times.
Note that there are some module dependencies in this

figure. For instance, the Monoid class and its verified coun-
terpart, VMonoid, have Semigroup and VSemigroup as su-
perclasses, respectively. Therefore, the figures for Monoid
reflect only the laws that VMonoid adds on top of the existing
laws for VSemigroup, not a cumulative total of all the laws
in both VSemigroup and VMonoid.
The bulk of the classes in Figure 4 have fairly reason-

able compilation times, most clocking in at under 5 seconds.
Applicative and Traversable, both of which contain over
500 SLoC apiece in their respective modules, take notice-
ably longer. Even without optimization, the Traversable
module takes about 10 seconds to compile. Applicative,
which takes about 4 seconds with -O0, balloons to about 19
seconds with -O1. We will say more about this phenomenon
in Section 5.2.3.

5.2.2 Example Program Timing Results
In addition to measuring the time it took to compile the
verified-classes library itself, we alsomeasured the times
that it took to compile representative sum and product types
with several generically-verified instances. The results in
Figures 5 and 6 chart the times for SumEx, the representa-
tive sum type, and ProductEx, the representative product
type, respectively. Here are the definitions of SumEx and
ProductEx:

data SumEx a

= MkSumEx1 | MkSumEx2 Unit

| MkSumEx3 a | MkSumEx4 (Pair Unit a)

data ProductEx a =

MkProductEx Unit a (Pair Unit a)

We say that SumEx and ProductEx are “representative” since
their generic representation types feature most of the pat-
tern functors discussed earlier. Since many of the classes

Figure 5. The time it takes to compile SumEx, a representa-
tive sum type, as progressively more verified class instances
are defined using generic defaults. -O0 through -O2 are the
different levels of optimization.

Figure 6. The time it takes to compile ProductEx, a repre-
sentative product type, as progressively more verified class
instances are defined using generic defaults. -O0 through
-O2 are the different levels of optimization. Note that the x-
axis in this figure uses a logarithmic scale, whereas a linear
scale is used in Figure 5.

in verified-classes do not support sum types, we use
separate sum and product types so that the product type
can demonstrate examples of instances that the sum type
could not have. The Unit and Pair datatypes are convenient
choices for types of fields as they support instances of most
of the classes in verified-classes.
Each figure was measured by starting out with the bare-

bones definition of its corresponding datatype along with
Generic, Generic1, VGeneric, and VGeneric1 instances;
this data point is labeled as Base. After this is measured,
the program is recompiled after adding generic Eq and VEq
instances; this data point is labeled as Eq. This process is
repeated for each label on the legend of each chart, and the
bars for each data point are stacked so as to reveal howmuch
additional time it took to compile every new additional set
of classes.
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5.2.3 Timing Results and Optimization
Figures 4, 5, and 6 all exhibit a curious spike in compilation
time when certain classes are compiled with optimization.
This is especially noticeable in the timing results for the
Traversable and Applicative classes. Surprisingly, most
of the CPU time that GHC spends during compilation is not
in the typechecking phase, where one would typically expect
lots of type-level computation to occur, but instead during
the simplifier phase.
In order to understand why GHC spends so much time

simplifying these programs, it is helpful to know, in a broad
sense, what happens when GHC compiles programs with de-
pendent types. GHC uses a well typed intermediate language
called Core that features explicit type-equality coercions [27].
While coercions are erased before running a program, they
do have an impact on compilation time, as optimization
passes over Core often have to manipulate coercions to type
of the Core involved. In general, the more coercions a piece
of Core has, the longer it takes to optimize. GHC even fea-
tures a dedicated optimization pass that attempts to reduce
the size of coercions so as to mitigate the effect that they can
have in later stages of compilation [33].

In picking a part of GHC to blame for the long compilation
times observed in this evaluation, the simplifier’s effect on co-
ercions is the likeliest culprit. Haskell programs with lots of
type-level computations typically correlate to Core with lots
of coercions, especially in combination with the singletons
encoding. As one extreme example, compiling ProductEx
with -O2 and all the verified classes from Figure 6 enabled
initially produces Core with about 143,000 coercions directly
after the typechecking phase is completed. This is already a
sizable number as the overall Core has about 226,000 nodes
total, making over 60% of the AST consist of coercions. Once
the simplifier begins, the number of coercions skyrockets
even further, at one point reaching a maximum of over 4.5
million!

While the measurements in these figures may seem bleak,
we have reason to be hopeful. One silver lining is that GHC is
leaving a lot of compilation performance on the table. GHC
typically builds up coercions by combining many smaller
coercions, and given that the design of coercions mirrors in-
ference rules of equational logic, there is a lot of opportunity
for groups of coercions to become quite bloated. One further
potential optimization is to “zap” a group of coercions down
into a single placeholder coercion. These placeholder coer-
cions, while less useful for debugging purposes, are much
more efficient to compile. An experimental GHC patch8 that
zaps coercions after every step of normalization in type-
level computation has shown to reduce the compile times of
a large program from 148.11 seconds to 0.65 seconds. We are
optimistic that coercion zapping could have similar benefits
for our work.

8https://gitlab.haskell.org/ghc/ghc/merge_requests/611

6 Generically Verifying Other Languages
The evaluation in Section 5 uses Haskell-plus-singletons
(as described in Appendix A.1 [21]) as the language to im-
plement the ideas in this paper, but they are by no means
limited to this one language. In this section, we briefly con-
sider implementations in two other languages: Coq, which
natively supports dependent types, as well as Liquid Haskell,
a verification tool for Haskell.

6.1 Coq
Coq is an automated theorem prover based on the Calculus of
Inductive Constructions. Coq also supports type classes [25],
which makes it a suitable target for datatype-generic proofs.
To test this claim, we have ported some of the functionality
from verified-classes to Coq. For example, here a generic
proof of the fact that (≤) is reflexive: 9

Theorem defaultLeqReflexive :

forall {a : Type} `{VGeneric a}

`{VOrd (Rep a)} `{Ord a}

`{! GOrd a}

(x : a), So (leq x x).

Proof.

intros. rewrite genericLeqC.

unfold genericLeq. apply leqReflexive.

Qed.

Happily, this approach meshes well with Coq. As shown in
the Proof block, one can even use Coq’s tactic system to fill
in the implementation of the function if one desires.

There is one conceptual difference betweenCoq andHaskell
to be aware of when writing this style of proofs, however.
Unlike Haskell, which prevents defining multiple instances
for the same type, Coq has no such restriction. By default,
when a type signature contains both Ord a and GOrd a con-
straints, Coq will not assume that the Ord a superclass of
GOrd a is the same as the Ord a listed in the type signature.
This motivates the use of the ! character before GOrd a in
the type signature above, which instructs Coq to share the
Ord a superclass with the one explicitly written out in the
type signature. This is important, since the proof will not go
through if the two classes are not connected in this manner.

6.2 Liquid Haskell
Liquid Haskell [30] is a tool that verifies properties of Haskell
code using an SMT solver. More recently, Liquid Haskell
has implemented refinement reflection [32], which allows
specifying arbitrary properties about functions and retrofits
Haskell into a theorem prover. Refinement reflection closes
the gap between Liquid Haskell and languages that support
dependent types, and one could envision a presentation of
the techniques in this paper using Liquid Haskell instead of
singletons.
9We rename (<=) to leq to avoid clashing which Coq’s existing (<=)
notation.
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We originally explored implementing verified-classes
using Liquid Haskell, but there exist technical issues which
prevent reflecting class methods in the same way that other
top-level functions can. 10 We were able to work around
these issues by crudely replacing all type classes with reified
dictionary datatypes, 11 although we felt this to be some-
what unsatisfactory. We hope that a future version of Liquid
Haskell will make this style of programming more natural.

7 Related Work
7.1 Univalent Transport in Homotopy Type Theory
Fundamentally, our work generates proofs for datatypes
by reusing proofs from the composition of several smaller
datatypes. This technique bears a strong resemblance to the
idea of transport in Homotopy Type Theory (HoTT), which
aims to carry over definitions and proofs from one datatype
to another datatype that is equivalent (i.e., there exists an
isomorphism between the two types). Indeed, recent work
into this area has demonstrated how to completely automate
this transport in Coq [28].

One potential drawback to using the techniques by Tabareau
et al. [28] is that some proofs must rely on the univalence
axiom, which asserts that syntactic equivalence is equivalent
to equality. Because univalence is not computable, any proof
that uses univalence will itself be uncomputable. Tabareau
et al. [28] identify a subset of the Calculus of Inductive Con-
structions in which transport is guaranteed to be free from
uses of this axiom, but imposes some restrictions on the
types involved (e.g., all indexed inductive families involved
must have decidable equality).
In contrast, our approach does not rely on univalence,

which means that the vast majority of our generated proofs
are computable. Some of the particular proofs in verified-
classes do rely on the function extensionality axiom (e.g.,
the proofs of the Functor laws, which involve statements
about higher-order functions), but this is a property that we
share in common with Tabareau et al. [28], which also uses
function extensionality to prove a theorem about transport-
ing dependent products.

7.2 Other Datatype-Generic Programming Styles
The techniques presented in this paper rely on the pattern
functor style of generic programming. This is only one way
to write datatype-generic programs, and other work ap-
proaches datatype-generic programming in a dependently
typed setting differently.

10See https://github.com/ucsd-progsys/liquidhaskell/issues/1196.
11See https://github.com/iu-parfunc/verified-instances/tree/
1110df2516bd059336fc37c018d7292a340918a8.

Benke et al. [6], Altenkirch et al. [4], and Chapman et al.
[9] demonstrate how to achieve datatype-generic program-
ming by first writing codes in a universe of inductively de-
fined sets and then generically programming over the in-
terpretations of those codes. Benke et al. [6] in particular
demonstrates that this technique can be used to derive proofs
of reflexivity and substitutivity in a generic equality test. Al-
Sibahi [2] implements a generic programming library in Idris
largely based on these ideas, and uses it to derive instances of
Eq, Ord, Functor, Applicative, and Traversable, as well
as proofs of their algebraic properties [3].
The “universe” style of dependently typed generic pro-

gramming as presented in Al-Sibahi [2] is perhaps the most
closely related existing relative to the ideas in this paper, as
both styles involve constructing descriptions of datatypes
(similar to representation types), converting to and from the
descriptions, and generically writing proofs over a minimal
universe datatype (similar to pattern functors). However,
these proofs assume particular generic implementations of
type class methods, whereas our system is more flexible in
what it allows, thanks to the techniques in Section 4.

8 Future Directions
8.1 Verifying Other Derived Instances
Haskell features a deriving mechanism that supports au-
tomatic generation of instances for commonly used type
classes, such as Eq, Ord, and Functor. While it is gener-
ally believed that deriving generates code that is lawful,
this is not a claim that has been formally verified. Indeed,
the volume of open GHC tickets containing the keyword
“deriving” —36 at the time of writing 12— suggests that ver-
ification could help increase user confidence that derived
instances are lawful.
The work in this paper addresses this concern to a lim-

ited extent, as the VGeneric class can verify that derived
Generic instances behave correctly. It would be interesting
to extend this treatment to every other derivable type class
in Haskell. This would not be entirely straightforward to do,
however, as some derived instances use low-level tricks for
performance reasons. For example, derived Ord instances
sometimes use the primitive dataToTag# function to more
efficiently compare enumeration types as machine integers.
13 We are unaware of a way to use dataToTag# at the type
level, so it remains to be seen how low-level derived code
could be verified as-is.

8.2 More Sophisticated Generic Programming Styles
Our work leverages the pattern functor style of datatype-
generic programming, while other work uses inductively

12According to https://gitlab.haskell.org/ghc/ghc/issues?scope=all&utf8=
%E2%9C%93&state=opened&label_name[]=deriving.
13See also https://gitlab.haskell.org/ghc/ghc/issues/15696 for an example of
a bug caused by a bad interaction between deriving Ord and dataToTag#.
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defined universes, generic combinators, and univalence, as
discussed in Section 7.2. It would be interesting to extend
these ideas to other forms of datatype-generic programming,
such as the sums of products approach that has seen popular-
ity in recent years. [10]
Our work uses representation types from GHC’s own

GHC.Generics module, which is essentially a faithful repro-
duction of the work in Magalhães et al. [17]. While these
representation types are nice to work with because of their
relative simplicity, they are somewhat limited in their ability
to represent advanced language features, such as polymor-
phic kinds or GADTs. We anticipate that the same tech-
niques from this paper could also be applied to more so-
phisticated datatype-generic programming libraries that do
support these advanced features, such as the libraries pre-
sented in Serrano and Miraldo [22, 23].

8.3 External Verification of Code
We have explored a solution for defining and verifying code
within the same language, and in the particular case of
verified-classes, the language is Haskell. Some previ-
ous efforts to verify Haskell code take a different approach
and verify Haskell code using an external tool, such as SMT
solvers [30], Coq [8, 26], Alfa [15], or Agda [1]. An external
verification tool could serve as the basis for deriving proofs,
as the implementations of the generic class methods could
live in Haskell, while the generic proofs could be constructed
in the external tool separately. This could also be used to
“bootstrap” languages that lack dependent types.

9 Conclusion
Wehave demonstrated how datatype-generic programming à
la pattern functors significantly streamline many class-based
proofs that would otherwise require excessive amounts of
boilerplate to implement. The idea of reducing the imple-
mentation down to minimal pattern functor types greatly
reduces the surface area that a library author has to cover,
as verifying the laws for other datatypes becomes a much
more manageable task of picking a suitable generic default.
Our techniques are general, as they can be ported to any
dependently typed programming language with the facilities
to reason about type classes. Moreover, our design is flexible
enough to adapt to existing class instances that were not
themselves defined using generic programming, allowing
this design to coexist with other code “in the wild”. The im-
plementation of these ideas in verified-classes offers a
blueprint for this can work for several notable classes with
proof obligations.
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