
Generic and Flexible Defaults for Verified,
Law-Abiding Type-Class Instances (Appendix)

Ryan G. Scott
Indiana University

United States
rgscott@indiana.edu

Ryan R. Newton
Indiana University

United States
rrnewton@indiana.edu

CCS Concepts • Software and its engineering→ Func-
tional languages; Data types and structures.

Keywords Type classes, generic programming, dependent
types, reuse
ACM Reference Format:
Ryan G. Scott and Ryan R. Newton. 2019. Generic and Flexible De-
faults for Verified, Law-Abiding Type-Class Instances (Appendix). In
Proceedings of the 12th ACM SIGPLAN International Haskell Sympo-
sium (Haskell ’19), August 22–23, 2019, Berlin, Germany. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3331545.3342591

A Appendix
A.1 The Singletons Encoding
The code in this paper strongly resembles Haskell, but with
the addition of several dependently typed features. How
is this possible, given that Haskell—or, more specifically,
its flagship implementation, the Glasgow Haskell Compiler
(GHC)— isn’t a dependently typed language? The trick is to
use singleton types, as popularized in Eisenberg and Weirich
[4].

While GHC does not support the full spectrum of features
one might find in a typical dependently typed language, it
does offer many language extensions that enrich its type
system. As one example, the data kinds extension allows one
to use data constructors at the type level instead of merely
the value level [7]. Combining these extensions yields an
encoding that can very convincingly simulate the experience
of writing dependently typed code.

This section serves as an outline as a field guide to trans-
lating the dependently typed Haskell code in the paper to
singletons code that one could actually run on a modern
version of GHC. Many of the definitions in this section are
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’19, August 22–23, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6813-1/19/08. . . $15.00
https://doi.org/10.1145/3331545.3342591

taken from the singletons Haskell library, which serves to
make using this encoding slightly easier.

A.1.1 Functions at the Type Level
Consider a simple function that negates a boolean value:

not :: Bool → Bool

not True = False

not False = True

In today’s GHC, this defines a function that exists only in
the value namespace, and any attempt to use not at the type
level simply results in an error. How, then, can we justify
writing code in the paper that uses not at the type level, such
as in Section 2.2.1 [6]? The trick is to use GHC’s type families
extension [1, 3], which allows defining functions for use at
the type level. For example, here is not formulated as a type
family:

type family Not (x :: Bool) :: Bool where

Not True = False

Not False = True

Type families—along with data kinds, which let us use Bool
constructors at the type level—let us define a type-level Not
in much the same way that we would write the value-level
not. One slightly annoying detail is that type families must
beginwith a capital letter, sowemust have a slightly different
name for the type family, but this is only a minor hiccup.
To make life somewhat easier, the singletons library

offers metaprogramming support for taking a value-level
definition and automatically generating its type family equiv-
alent, a process that the library calls promotion [2]. Therefore,
when we use value-level functions at the type level in the
Haskell code of this paper, one can imagine that we had
promoted the function beforehand and are actually using
the promoted name.
Type class methods can be promoted as well, taking ad-

vantage of the fact that type families can be associated with
classes. For example, in this class with a single method:

class Collect c where

emptyCollect :: c

We can promote it to the following class with a single asso-
ciated type family, adopting the convention that promoted
class names start with a P:

https://doi.org/10.1145/3331545.3342591
https://doi.org/10.1145/3331545.3342591

Haskell ’19, August 22–23, 2019, Berlin, Germany Ryan G. Scott and Ryan R. Newton

class PCollect c where

type family EmptyCollect :: c

Note that the c in the kind of EmptyCollect is a kind vari-
able, which makes use of GHC’s faculties for kind polymor-
phism. [7]

A.1.2 Dependent Pattern Matching
In order to use functions at the type level profitably, it is not
enough to just promote the functions. Consider the following
function in dependent Haskell:

foo :: Π (b :: Bool) → if b then Int else ()

foo True = 42

foo False = ()

In order to write this function in GHC, we first need to define
an If type family, which we can do using the techniques in
Section A.1.1. But there is still another obstacle: how do we
encode the Π quantifier, which permits dependent pattern
matching?
This is where singleton types become useful. Given a

datatype that we wish to dependently match on, we can
define an isomorphic singleton type. For instance, this is the
singleton type for Bools:

data SBool :: Bool → Type where

SFalse :: SBool False

STrue :: SBool True

The SBool datatype is indexed by a Bool, which makes it
valuable for carrying around type-level information about
that Bool. For instance, matching on STrue brings into scope
evidence that the Bool is equal to True at the type level,
which can be used to help guide along evaluation of functions
at the type level. Here is an example of SBools in action:

foo :: SBool b → If b Int ()

foo STrue = 42

foo SFalse = ()

When foo matches on STrue, it reveals that b is equal to
True, which causes If b Int () to reduce to Int, which
is what permits the right-hand side of the equation to type-
check. (And similarly for foo’s second equation). Because
there are somany singleton types in existence, the singletons
library defines a Sing type family that provides a common
name for all singleton types. Therefore, an equivalent way
of writing the type of foo is:

foo :: Sing (b :: Bool) → If b Int ()

When written this way, the similarities between singleton
types and the Π quantifier are even more apparent1. When-
ever Haskell code in this paper features uses of Π, we are
really using Sing under the hood.
The singletons library also automates some of the te-

dium of using singleton types. The library offers metapro-
gramming support for taking a datatype declaration and
1Some even go as far as defining type Π = Sing!

generating its singleton type as an output, a process the li-
brary refers to as singling. The library also supports singling
function definitions. For instance, this is the singled version
of the not function:

sNot :: Sing (b :: Bool) → Sing (Not b)

sNot STrue = SFalse

sNot SFalse = STrue

The singled versions of functions can be useful in contexts
that require lots of type-level computation (e.g., proofs), so
the code in this paper implicitly uses many singled defini-
tions.

In addition to top-level functions, type class methods can
also be singled. We adopt the convention that the names
of singled classes start with an S. For example, here is the
singled version of Collect:

class SCollect c where

sEmptyCollect :: Sing (EmptyCollect :: c)

A.1.3 Partially Applied Functions
The tricks in Sections A.1.1 and A.1.2 encode 90% of the de-
pendently typed Haskell code in this paper. The remaining
10% concerns the use of partially applied functions, some-
thing which Haskell excels at the value level but is less adept
at doing at the type level. To illustrate what the issue is,
consider the following functions:

notList :: [Bool] → [Bool]

notList bs = map not bs

map :: (a → b) → [a] → [b]

map _ [] = []

map f (x:xs) = f x : map f xs

If we wish to promote notList to the type level, then we
first need to promote map. Here is naïve first attempt:
type family Map (f :: a → b) (x :: [a]) :: b where

Map _ '[] = '[]

Map f (x:xs) = f x : Map f xs

Although this type family typechecks, one cannot define
NotList bs = Map Not bs. The reason this does not work
is because GHC requires that all type families appear fully
saturated, with all of its arguments supplied. This restriction
is in place because the ability to abstract over unapplied
type families would wreak havoc with GHC’s type inference
engine. 2 The bottom line is that Map Not bs is disallowed,
since Not is partially applied.
Fortunately, there exists a way to work around this re-

striction. The singletons library offers a way to defunc-
tionalize [5] type families using opaque symbols, which can
be explicitly applied to arguments using the application op-
erator Apply. For instance, here is the defunctionalization
symbol for the Not type family:
2See Section 7.1 of Eisenberg and Stolarek [2] for an extended discussion
on this point.

Generic and Flexible Defaults for Verified, Law-Abiding Type-Class Instances (Appendix) Haskell ’19, August 22–23, 2019, Berlin, Germany

data NotSym0 :: a { b

The use of “Sym0” indicates that this is a defunctionalization
symbol which is applied to zero arguments. Moreover, its
kind a { b indicates that it can be futher applied to one
more argument of type a, returning something of type b. The
{ arrow is the kind of defunctionalization symbols:

data TyFun :: Type → Type → Type

type a { b = TyFun a b → Type

Finally, in order to be able to use NotSym0meaningfully, one
must be able to Apply it. This can be done by writing an
instance of the Apply type family, the definition of which
(and an example instance) are reproduced below:

type family Apply (f :: a { b) (x :: a) :: b

type instance Apply NotSym0 b = Not b

Using defunctionalization, we can write a version of Map that
accepts a defunctionalization symbol as its first argument:
type family Map (f :: a { b) (x :: [a]) :: b where

Map _ '[] = '[]

Map f (x:xs) = Apply f x : Map f xs

This lets us complete our original goal, which was writing a
promoted version of notList:
type family NotList (bs :: [Bool]) :: [Bool] where

NotList bs = Map NotSym0 bs

This encoding is somewhat involved, but is thankfully only
a mechanical change that can be automated. In fact, the
singletons library generates code using{ instead of →
whenever function types are used in higher-order positions,
and this allows it to generate the definitions of NotList

and Map that we wrote above. Moreover, the library also
generates all of the defunctionalization symbols for each
function, which is especially useful for functions with many
arguments, as they require equally many symbols.

References
[1] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.

2005. Associated Type Synonyms. In Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming (ICFP ’05).
ACM, New York, NY, USA, 241–253. https://doi.org/10.1145/1086365.
1086397

[2] Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions
to Type Families in Haskell. In Proceedings of the 2014 ACM SIGPLAN
Symposium on Haskell (Haskell ’14). ACM, New York, NY, USA, 95–106.
https://doi.org/10.1145/2633357.2633361

[3] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and
Stephanie Weirich. 2014. Closed Type Families with Overlapping Equa-
tions. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’14). ACM, New York, NY,
USA, 671–683. https://doi.org/10.1145/2535838.2535856

[4] Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed
Programming with Singletons. In Proceedings of the 2012 Haskell Sym-
posium (Haskell ’12). ACM, New York, NY, USA, 117–130. https:
//doi.org/10.1145/2364506.2364522

[5] John C. Reynolds. 1972. Definitional Interpreters for Higher-order
Programming Languages. In Proceedings of the ACM Annual Conference
- Volume 2 (ACM ’72). ACM, New York, NY, USA, 717–740. https:
//doi.org/10.1145/800194.805852

[6] Ryan G. Scott and Ryan R. Newton. 2019. Generic and Flexible Defaults
for Verified, Law-Abiding Type-Class Instances.

[7] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. 2012. Giving Haskell a
Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types
in Language Design and Implementation (TLDI ’12). ACM, New York,
NY, USA, 53–66. https://doi.org/10.1145/2103786.2103795

https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/2633357.2633361
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/2103786.2103795

	A Appendix
	A.1 The Singletons Encoding

	References

