Deriving Via

or, How to Turn Hand-Written Instances into an Anti-Pattern

Baldur Blondal

Abstract

Haskell’s deriving construct is a cheap and cheerful way
to quickly generate instances of type classes that follow
common patterns. But at present, there is only a subset of
such type class patterns that deriving supports, and if a
particular class lies outside of this subset, then one cannot
derive it at all, with no alternative except for laboriously
declaring the instances by hand.

To overcome this deficit, we introduce Deriving Via, an
extension to deriving that enables programmers to compose
instances from named programming patterns, thereby turn-
ing deriving into a high-level domain-specific language for
defining instances. Deriving Via leverages newtypes—an al-
ready familiar tool of the Haskell trade—to declare recurring
patterns in a way that both feels natural and allows a high
degree of abstraction.

CCS Concepts - Software and its engineering — Func-
tional languages; Data types and structures;

Keywords type classes, instances, deriving, Haskell, func-
tional programming

ACM Reference Format:

Baldur Blondal, Andres Loh, and Ryan Scott. 2018. Deriving Via: or,
How to Turn Hand-Written Instances into an Anti-Pattern. In Pro-
ceedings of the 11th ACM SIGPLAN International Haskell Symposium
(Haskell °18), September 27-28, 2018, St. Louis, MO, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3242744.3242746

1 Introduction

In Haskell, type classes capture common interfaces. When
defining class instances, we often discover repeated patterns
where different instances have the same definition. For ex-
ample, the following instances appear in the base library of
the Glasgow Haskell Compiler (GHC):

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell 18, September 27-28, 2018, St. Louis, MO, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-5835-4/18/09...$15.00
https://doi.org/10.1145/3242744.3242746

Andres Loh
Well-Typed LLP

Ryan Scott

Indiana University

instance Monoid a => Monoid (IO a) where
mempty = pure mempty
mappend = 1iftA2 mappend

instance Monoid a => Monoid (ST s a) where
mempty = pure mempty
mappend = 1iftA2 mappend

These have completely identical instance bodies. The under-
lying pattern works not only for 10 and ST s, but for any
applicative functor f.

It is tempting to avoid this obvious repetition by defining
an instance for all such types in one fell swoop:

instance (Applicative f, Monoid a)
=> Monoid (f a) where
mempty = pure mempty
mappend = 1iftA2 mappend

Unfortunately, this general instance is undesirable as it over-
laps with all other (f a)-instances. Instance resolution will
match the instance head first before considering the context,
whether f is applicative or not. Once GHC has commited to
an instance, it will never backtrack. Consider:

newtype Endo a = MkEndo (a -> a) - Data.Monoid

Here, Endo is not an applicative functor, but it still admits a
perfectly valid Monoid instance that overlaps with the general
instance above:

instance Monoid (Endo a) where
mempty = MkEndo id
mappend (MkEndo f) (MkEndo g) = MkEndo (f . g)

Moreover, even if we have an applicative functor f on our
hands, there is no guarantee that this is the definition we
want. Notably, lists are the free monoid (i.e, the most ‘fun-
damental’ monoid) but that instance does not coincide with
the rule above and in particular, imposes no (Monoid a) con-
straint:

instance Monoid [a] where
]
mappend = (+)

mempty

In fact, the monoid instance for lists is captured by a different
rule based on Alternative:

instance Alternative f => Monoid (f a) where
mempty = empty
mappend = (<[>)

https://doi.org/10.1145/3242744.3242746
https://doi.org/10.1145/3242744.3242746

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

Because instance resolution never backtracks, we cannot
define these two distinct rules for Monoid (f a) at the same
time, even with overlapping instances.

The only viable workaround using the Haskell type class
system is to write the instances for each data type by hand,
each one with an identical definition (like the instances for 10
aand ST s a), which is extremely unsatisfactory:

e It is not obvious that we are instantiating a general
principle.

e Because the general principle is not written down in
code with a name and documentation, it has to be
communicated through folklore or in comments and
is difficult to discover and search for. Our code has lost
a connection to its origin.

e There are many such rules, some quite obvious, but
others more surprising and easy to overlook.

e While the work required to define instances manually
for Monoid—which only has two methods—is perhaps
acceptable, it quickly becomes extremely tedious and
error-prone for classes with many methods.

As an illustration of the final point, consider Num. There is
a way to lift a Num instance through any applicative functor:'

instance (Applicative f, Num a) => Num (f a) where
(+) = LiftA2 (+)
(=) = liftA2 (=)
(%) = 1iftA2 ()

negate = 1iftA negate
liftA abs
signum = 1iftA signum

abs

fromInteger = pure . fromInteger

Defining such boilerplate instances manually for concrete
type constructors is so annoying that Conal Elliott intro-
duced a preprocessor [8] for this particular use case several
years ago.

1.1 Deriving

Readers familiar with Haskell’s deriving mechanism may
wonder why we cannot simply derive all the instances we
just discussed. Unfortunately, our options are very limited.

To start, Monoid is not one of the few blessed type classes
that GHC has built-in support to derive. It so happens that
(10 a), (ST s a) and (Endo a) are all newtypes, so they are
in principle eligible for generalized newtype deriving (GND),
in which their instances could be derived by reusing the
instances of their underlying types [1]. However, this would
give us the wrong definition in all three cases.

Our last hope is that the the Monoid type class has a suit-
able generic default implementation [11]. If that were the
case, we could use a deriving clause in conjunction with the

ISimilarly for Floating and Fractional, numeric type classes with a com-
bined total of 25 methods (15 for a minimal definition).

Baldur Blondal, Andres Loh, and Ryan Scott

DeriveAnyClass extension, and thereby get the compiler to
generate an instance for us.

However, there is no generic default for Monoid, a stan-
dard class from the base library (which would be difficult to
change). But even if a generic instance existed, it would still
capture a single rule over all others, so we couldn’t ever use
it to derive both the monoid instance for lists and that for
ST s a.

We thus have no other choice but to write some instances
by hand. This means that we have to provide explicit imple-
mentations of at least a minimal subset of the class methods.
There is no middle ground here, and the additional work
required compared to deriving can be drastic—especially if
the class has many methods—so the option of using deriving
remains an appealing alternative.

1.2 Introducing Deriving Via

We are now going to address this unfortunate lack of abstrac-
tion and try to bridge the gap between manually defined
instances and the few available deriving mechanisms we
have at our disposal.

Our approach has two parts:

1. We capture general rules for defining new instances
using newtypes.

2. We introduce Deriving Via, a new language construct
that allows us to use such newtypes to explain to the
compiler exactly how to construct the instance without
having to write it by hand.

As a result, we are no longer limited to a fixed set of
predefined ways to define particular class instances, but can
instead teach the compiler new rules for deriving instances,
selecting the one we want using a high-level description.

Let us look at examples. For the first part, we revisit the
rule that explains how to lift a monoid instance through
an applicative functor. We can turn the problematic generic
and overlapping instance for Monoid (f a) into an entirely
unproblematic instance by defining a suitable adapter new-
type [9] and wrapping the instance head in it:

newtype Ap f a = Ap (f a)
instance (Applicative f, Monoid a)
=> Monoid (Ap f a) where
mempty = Ap (pure mempty)
mappend (Ap f) (Ap g) = Ap (1iftA2 mappend f g)

Since GHC 8.4, we also need a Semigroup instance, because it
is now a superclass of Monoid?:

instance (Applicative f, Semigroup a)
=> Semigroup (Ap f a) where
Ap f <> Ap g = Ap (LiftA2 (<>) f g)

2See Section 4.4 for a more detailed discussion of this aspect.

Deriving Via

The second part is to now use such a rule in our new form
of deriving statement. We can do this when defining a new
data type, such as in

data Maybe a = Nothing | Just a
deriving Monoid via (Ap Maybe a)

This requires that we independently have an Applicative
instance for Maybe, but then we obtain the desired Monoid
instance nearly for free.

In the deriving clause, via is a new language construct
that explains how GHC should derive the instance, namely
by reusing the Monoid instance already available for the via
type, Ap Maybe a. It should be easy to see why this works:
due to the use of a newtype, Ap Maybe a has the same internal
representation as Maybe a, and any instance available on one
type can be made to work on the other by suitably wrapping
or unwrapping a newtype. In more precise language, Ap
Maybe a and Maybe a are representationally equal [1].

The Data.Monoid module defines many further adapters
that can readily be used with Deriving Via. For example,
the rule that obtains a Monoid instance from an Alternative
instance is already available through the A1t newtype:

newtype Alt f a = Alt (f a)

instance Alternative f => Monoid (Alt f a) where
mempty Alt empty
mappend (Alt f) (ALt g) = Alt (f <[> g)

instance Alternative f => Semigroup (Alt f a) where
(<>) = mappend

Note that while A1t has the same definition as Ap, its Monoid
instance is different, and by naming the type in a via clause,
we can explicitly select the instance we are interested in.

Using adapters such as Ap and Alt, a vast amount of Monoid
instances that currently have to be defined by hand can
instead be derived using the via construct.

1.3 Contributions and Structure of the Paper

Many hand-written instances that occur in Haskell code
are in fact instantiations of similar rules as we have just
shown, and can be replaced by Deriving Via. We argue that
expressing an instance as the instantiation of a rule should
be the norm, and using a hand-written instance when a rule
could be used instead should be discouraged, or even be
considered an anti-pattern.

Throughout the paper, we provide many additional exam-
ples of the use of Deriving Via, starting with a case study
using the QuickCheck library (Section 2).

We also provide a detailed explanation of how to type-
check and translate Deriving Via clauses (Section 3).

The idea of Deriving Via is surprisingly simple, yet it has
a number of powerful and equally surprising properties:

o It further generalizes the generalized newtype deriving
extension. (Section 3.2.1).

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

e It additionally generalizes the concept of default sig-
natures. (Section 4.2).

e It provides a possible solution to the problem of intro-
ducing additional boilerplate code when introducing
new superclasses (such as Applicative for Monad, Sec-
tion 4.4).

e It allows for reusing instances not just between repre-
sentationtally equal types, but also between isomor-
phic or similarly related types (Section 4.3).

Our extension is fully implemented in GHC and will be
present in version 8.6.

2 Case Study: QuickCheck

QuickCheck [3] is a well-known Haskell library for random-
ized property-based testing. At the core of QuickCheck’s
test-case generation functionality is the Arbitrary class. Its
primary method is arbitrary, which describes how to gen-
erate suitable random values of a given size and type. It also
has a method shrink that is used to try to shrink failing
counterexamples of test properties.

Many standard Haskell types, such as Int and lists, are
already instances of Arbitrary. This can be very convenient,
because many properties involving these types can be quick-
checked without any extra work.

On the other hand, there are often additional constraints
imposed on the actual values of a type that are not sufficiently
expressed in their types. Depending on the context and the
situation, we might want to guarantee that we generate
positive integers, or non-empty lists, or even sorted lists.

The QuickCheck library provides a number of newtype-
based adapters (called modifiers in the library) for this pur-
pose. As an example, QuickCheck defines:

newtype NonNegative a =
NonNegative {getNonNegative :: a}

which comes with a predefined instance of the form

instance (Num a, Ord a, Arbitrary a)
=> Arbitrary (NonNegative a)

that explains how to generate and shrink non-negative num-
bers. A user who wants a non-negative integer can now use
NonNegative Int rather than Int to make this obvious.

This approach, however, has a drastic disadvantage: we
have to wrap each value in an extra constructor, and the
newtype and constructor are QuickCheck-specific. An im-
plementation detail (the choice of testing library) leaks into
the data model of an application. While we might be willing
to use domain-specific newtypes for added type safety, such
as Age or Duration, we might not be eager to add QuickCheck
modifiers everywhere. And what if we need more than one
modifier? And what if other libraries export their own set of
modifiers as well? We certainly do not want to change the
actual definition of our data types (and corresponding code)
whenever we start using a new library.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

With Deriving Via, we have the option to reuse the exist-
ing infrastructure of modifiers without paying the price of
cluttering up our data type definitions. We can choose an
actual domain-specific newtype such as

newtype Duration = Duration Int - in seconds

and now specify exactly how the Arbitrary should be derived
for this:

deriving Arbitrary via (NonNegative Int)

This yields an Arbitrary instance that generates only non-
negative integers. Only the deriving clause changes, not the
data type itself. If we later decide we want only positive
integers as durations, we replace NonNegative with Positive
in the deriving clause. Again, the data type itself is unaffected.
In particular, we do not have to change any constructor
names anywhere in our code.

2.1 Composition

Multiple modifiers can be combined. For example, there is
another modifier called Large that will scale up the size of
integral values being produced by a generator. It is defined
as

newtype Large a = Large {getlLarge :: a}
with a corresponding Arbitrary instance:
instance (Integral a, Bounded a) => Arbitrary (Large a)
For our Duration type, we can easily write®
deriving Arbitrary via (NonNegative (Large Int))

and derive an instance which only generates Duration values
that are both non-negative and large. This works because
Duration still shares the same runtime representation as
NonNegative (Large Int) (namely, that of Int), so the latter’s
Arbitrary instance can be reused.

2.2 Adding New Modifiers

Of course, we can add add our own modifiers if the set of
predefined modifiers is not sufficient. For example, it is diffi-
cult to provide a completely generic Arbitrary instance that
works for all data types, simply because there are too many
assumptions about what makes good test data that need to
be taken into account.

But for certain groups of data types, there are quite rea-
sonable strategies of coming up with generic instances. For
example, for enumeration types, one strategy is to desire a
uniform distribution of the finite set of values. QuickCheck
even offers such a generator, but it does not expose it as a
newtype modifier:

3Here and in many later places, we use deriving clauses in isolation, in order
to highlight the part of the syntax we are focusing on and to not repeat
data or newtype unnecessarily often. It is still understood that the deriving
clause is syntactically attached to the data type declaration mentioned in
the text — in this case, Duration. Our extension is also compatible with
StandaloneDeriving, which is briefly discussed in Section 6.

Baldur Blondal, Andres Loh, and Ryan Scott

arbitraryBoundedEnum :: (Bounded a, Enum a) => Gen a
But from this, we can easily define our own:

newtype BoundedEnum a = BoundedEnum a

instance (Bounded a, Enum a)
=> Arbitrary (BoundedEnum a) where
arbitrary = BoundedEnum <$> arbitraryBoundedEnum

We can then use this functionality to derive Arbitrary for a
new enumeration type:

data Weekday = Mo | Tu | We | Th | Fr | Sa | Su
deriving (Enum, Bounded)
deriving Arbitrary via (BoundedEnum Weekday)

2.3 Parameterized Modifiers

Sometimes, we might want to parameterize a generator with
extra data. We can do so by defining a modifier that has extra
arguments and using those extra arguments in the associated
Arbitrary instance.

An extreme case that also makes use of type-level pro-
gramming features in GHC is a modifier that allows us to
specify a lower and an upper bound of a generated natural
number.

newtype Between (1 :: Nat) (u :: Nat) = Between Integer

instance (KnownNat 1, KnownNat u)
=> Arbitrary (Between 1 u) where
arbitrary = Between <$>
choose (natVal @1 Proxy, natVal @u Proxy)

(Note that this instance makes use of visible type applica-
tion [7] in natVal @l and natVal @u.)

We can then equip an application-specific type for years
with a generator that lies within a plausible range:

newtype Year = Year Integer
deriving Show
deriving Arbitrary via (Between 1900 2100)

In general, we can use this technique of adding extra pa-
rameters to a newtype to support additional ways to config-
ure the behavior of derived instances.

3 Typechecking and Translation

Seeing enough examples of Deriving Via can give the impres-
sion that it is a somewhat magical feature. In this section, we
aim to explain the magic underlying Deriving Via by giving
a more precise description of:

e how Deriving Via clauses are typechecked,

e what sort of code Deriving Via generates behind the
scenes, and

e how to determine the scoping of type variables in De-
riving Via clauses.

Deriving Via

To avoid clutter, we assume that all types have monomor-
phic kinds. However, it is easy to incorporate kind polymor-
phism [13], and our implementation of these ideas in GHC
does so.

3.1 Well-Typed Uses of Deriving Via

Deriving Via grants the programmer the ability to put extra
types in her programs, but the flip side to this is that it is
possible for her to accidentally put total nonsense into a
Deriving Via clause, such as:

newtype S = S Char
deriving Eq via Maybe

In this section, we describe a general algorithm for when a
Deriving Via clause should typecheck, which will allow us
to reject ill-formed examples like the one above.

3.1.1 Aligning Kinds

Suppose we are deriving the following instance:

data D dy ... dp

deriving (C ¢y ... ¢p) via (V vi ... vp)

In order for this declaration to typecheck, we must check
the kinds of each type. In particular, the following conditions
must hold:

1. ThetypeC ¢y ... cpmustbeofkind (ky => ... =>k, —>
%) -=> Constraint for some kinds ki, ..., k,. The rea-
son is that the instance * we must generate,

instance C ¢1 ... ¢p (V v1 ... vp) =>
Cci ... ¢y (Ddy ... dj) where ...

requires that we can apply C c; ... ¢, to the types
Vvi...vpandD d; ... d; (Wherei = m — r, see Sec-
tion 3.1.2). Therefore, it would be nonsense to try to
derive an instance of C c; ... ¢, if it had kind, say,
Constraint, since it couldn’t be applied as above.

2. Thekinds of V v; ... vpandD d; ... d;, and the kind of
the argument to C ¢; ... ¢, must all unify. This check
rules out the above example of deriving Eq via Maybe,
as it does not even make sense to talk about reusing the
Eq instance for Maybe—which is of kind (* -> *)—as Eq
instances can only exist for types of kind *.

3.1.2 Shaping the Data Type

Note that in the conditions above, we specify D d; ... d; (for
some i), instead of D dy ... dp,. Thatis because in general, the
kind of the argument to C ¢; ... ¢, is allowed to be different
from the kind of D d; ... d;! For instance, the following
example is perfectly legitimate:

4Technically, the context that is produced is not C ¢; ... ¢, (V vy ... Vo),
but instead the residual constraints that are produced from GHC’s constraint
solver after simplifying that context. This is a property that Deriving Via
shares with other forms of deriving as well.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

class Functor (f :: * -> %) where ...

data Foo a = Foo a a
deriving Functor

despite the fact that Foo a has kind * and the argument to
Functor has kind (* -> *). This is because the code that ac-
tually gets generated has the following shape:

instance Functor Foo where ...

To put it differently, we have dropped the a in Foo a before
applying Functor to it. The power to drop variables from the
data type is part of what makes deriving clauses so flexible.

To determine how many variables to drop, we must exam-
ine the kind of C ¢; ... ¢p, which by condition (1) is of the
form ((k; -=> ... => k, => %) -> Constraint) for some kinds
ki, ..., kr. Then the number of variables to drop is simply r,
so to compute the i inD d; ... dj, wetakei = m — r.

This is better explained by example, so consider the fol-
lowing two scenarios, both of which typecheck:

newtype A a = A a deriving Eq
newtype B b

via (Identity a)
B b deriving Functor via Identity

In the first example, we have the class Eq, which is of kind * ->
Constraint. The argument to Eq, which is of kind *, does not
require that we drop any variables. As a result, we check
that A ais of kind *, which is the case.

In the second example, we have the class Functor, which
is of kind (x -> %) -> Constraint. The argument to Functor
is of kind (* -> %), which requires that we drop one variable
from B b to obtain B. We then check that B is kind of (* ->
%), which is true.

3.2 Code Generation

Once the typechecker has ascertained that a via type is fully
compatible with the data type and the class for which an
instance is being derived, GHC proceeds with generating the
code for the instance itself. This generated code is then fed
back into the typechecker, which acts as a final sanity check
that GHC is doing the right thing under the hood.

3.2.1 Generalized Newtype Deriving (GND)

The process by which Deriving Via generates code is heavily
based off of the approach that generalized newtype deriv-
ing (GND) takes, so it is informative to first explain how
GND works. From there, Deriving Via is a straightforward
generalization—so much so that Deriving Via can be thought
of as “generalized GND”.

Our running example in this section will be the newtype
Age, which is a simple wrapper around Int (which we will
call the representation type):

newtype Age = MkAge Int
deriving Enum

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

A naive way to generate code would be to manually wrap
and unwrap the MkAge constructor wherever necessary, such
as in the code below:

instance Enum Age where
toEnum i = MkAge (toEnum i)
fromEnum (MkAge x) = fromEnum x
enumFrom (MkAge x) = map MkAge (enumFrom x)

This works, but is somewhat unsatisfying. After all, a new-
type is intended to be a zero-cost abstraction that acts iden-
tically to its representation type at runtime. Accordingly,
any function that mentions a newtype in its type signature
should be able to be converted to a new function with all oc-
currences of the newtype in the type signature replaced with
the representation type, and moreover, that new function
should behave identically to the old one at runtime.

Unfortunately, the implementation of enumfFrom may not
uphold this guarantee. While wrapping and unwrapping the
MkAge constructor is certain to be a no-op, the map function
is definitely not a no-op, as it must walk the length of a list.
But the fact that we need to call map in the first place feels
rather silly, as all we are doing is wrapping a newtype at
each element.

Luckily, there is a convenient solution to this problem: the
safe coerce function [1]:

coerce :: Coercible ab=>a->b

Operationally, coerce can be thought of as behaving like its
wily cousin, unsafeCoerce, which takes a value of one type
as casts it to a value at a another type. Unlike unsafeCoerce,
which can break programs if used carelessly, coerce is com-
pletely type-safe due to its use of the Coercible constraint.
We explain Coercible in more detail in Section 3.2.2, but
for now, it suffices to say that a Coercible a b constraint
witnesses the fact that two types a and b have the same rep-
resentation at runtime, and thus any value of type a can be
safely cast to type b.

Armed with coerce, we can show what code GND would
actually generate for the Enum Age instance above:

instance Enum Age where
toEnum =
coerce @(Int -> Int) @(Int -> Age) toEnum
fromEnum =
coerce @(Int -> Int) @(Age -> Int) fromEnum
enumFrom =
coerce @(Int -> [Int]) @(Age -> [Agel) enumFrom

Now we have a strong guarantee that the Enum instance for
Age has exactly the same runtime characteristics as the in-
stance for Int. As an added benefit, the code ends up being
simpler as every method can be implemented as a straight-
forward application of coerce. The only interesting part is
generating the two explicit type arguments [7] that are be-
ing used to specify the source type (using the representation
type) and the target type (using the newtype) of coerce.

Baldur Blondal, Andres Loh, and Ryan Scott

3.2.2 The Coercible Constraint

A Coercible constraint can be thought of as evidence that
GHC can use to cast between two types. Coercible is not a
type class, so it is impossible to write a Coercible instance
by hand. Instead, GHC can generate and solve Coercible
constraints automatically as part of its built-in constraint
solver, much like it can solve equality constraints. (Indeed,
Coercible can be thought of as a broader notion of equality
among types.)

As mentioned in the previous section, a newtype can be
safely cast to and from its representation type, so GHC treats
them as inter-Coercible. Continuing our earlier example,
this would mean that GHC would be able to conclude that:

instance Coercible Age Int
instance Coercible Int Age

But this is not all that Coercible is capable of. A key prop-
erty is that GHC’s constraint solver can look inside other
type constructors when determining whether two types are
inter-Coercible. For instance, both of these statements hold:

instance Coercible (Age -> [Agel) (Int -> [Int])
instance Coercible (Int -> [Int]) (Age -> [Agel)

This demonstrates the ability to cast through the function
and list type constructors. This ability is important, as our
derived enumFrom instance would not typecheck otherwise!

Another crucial fact about Coercible that we rely on is
that it is transitive: if Coercible a b and Coercible b ¢ hold,
then Coercible a c also holds. This is perhaps unsurprising
if one views Coercible as an equivalence relation, but it
is a fact that is worth highlighting, as the transitivity of
Coercible is what allows us to coerce between newtypes. For
instance, if we have these two newtypes:

newtype A a = A [a]
newtype B =B [Int]

then GHC is able to conclude that Coercible (A Int) Bholds,
because we have the following Coercible rules

instance Coercible (A Int) [Int]
instance Coercible [Int] B

as well as transitivity. As we will discuss momentarily, De-
riving Via in particular makes heavy use of the transitivity
of Coercible.

3.2.3 From GND to Deriving Via

As we saw in Section 3.2.1, the code which GND generates
relies on coerce to do the heavy lifting. In this section, we
generalize this technique slightly to give us a way to generate
code for Deriving Via.

Recall the following GND-derived instance:

newtype Age = MkAge Int deriving Enum

As stated above, it generates the following code for enumfFrom:

Deriving Via
instance Enum Age where

enumFrom =
coerce @(Int -> [Int]) @(Age -> [Agel) enumFrom

Here, there are two crucially important types: the representa-
tion type, Int, and the original newtype itself, Age. The imple-
mentation of enumF rom simply sets up an invocation of coerce
enumFrom, with explicit type arguments to indicate that we
should reuse the existing enumFrom implementation for Int
and reappropriate it for Age.

The only difference in the code that GND and Deriving Via
generate is that in the former strategy, GHC always picks the
representation type for you, but in Deriving Via, the user has
the power to choose this type. For example, if a programmer
had written this instead:

newtype T = T Int
instance Enum T where ...

newtype Age = MkAge Int deriving Enum via T
then the following code would be generated:

enumFrom =
coerce @(T -> [T]) @(Age -> [Agel) enumFrom

This time, GHC coerces from an enumfrom implementation
for T (the via type) to an implementation for Age. (Recall
from Section 3.2.2 that this is possible since we can coerce
transitively from T to Int to Age).

Now we can see why the instances that Deriving Via can
generate are a strict superset of those that GND can generate.
For instance, our earlier GND example

newtype Age = MkAge Int deriving Enum

could equivalently have been written using Deriving Via like
$0:

newtype Age = MkAge Int deriving Enum via Int

Unlike GND, which is only suitable for deriving instances
for newtypes, Deriving Via can derive instances for data
types and newtypes alike (see Weekday in Section 2.2 for one
example of a data type).

3.3 Type Variable Scoping

In the remainder of this section, we present an overview of
how type variables are bound in Deriving Via clauses, and
over what types they scope. Deriving Via introduces a new
place where types can go, and more importantly, it introduces
anew place where type variables can be quantified, so it takes
some amount of care to devise a consistent treatment for it.

3.3.1 Binding Sites
Consider the following example:

data Foo a = ...
deriving (Baz a b ¢) via (Bar a b)

Where is each type variable quantified?

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

e ais bound by Foo itself in the declaration data Foo a.
Such a variable scopes over both the derived class, Baz
a b c, as well as the via type, Bar a b.

e bisbound by the viatype,Bar a b.Note thatb is bound
here but a is not, as it was bound earlier by the data
declaration. b scopes over the derived class type, Baz
a b c, as well

e c is bound by the derived class, Baz a b c, as it was
not bound elsewhere. (a and b were bound earlier.)

In other words, the order of scoping starts at the data
declaration, then the via type, and then the derived classes
associated with that via type.

3.3.2 Establishing Order

This scoping order may seem somewhat surprising, as one
might expect the type variables bound by the derived classes
to scope over the via type instead. However, this choice
introduces additional complications that are tricky to resolve.
For instance, consider a scenario where one attempts to
derive multiple classes at once with a single via type:

data D
deriving (C1 a, C2 a) via (T a)

Suppose we first quantified the variables in the derived
classes and made them scope over the via type. Because
each derived class has its own type variable scope, the a in
€1 a would be bound independently from the a in C2 a. In
other words, we would have something like this (using a
hypothetical forall syntax):

deriving (forall a . C1 a, forall a . C2 a) via (T a)

Now we are faced with a thorny question: which a is used in
the via type, T a? There are multiple choices here, since the
a variables in C1 aand C2 a are distinct! This is an important
decision, since the kinds of C1 and €2 might differ, so the
choice of a could affect whether T a kind-checks or not.

On the other hand, if one binds the ain T a first and has it
scope over the derived classes, then this becomes a non-issue.
We would instead have this:

deriving (C1 a, C2 a) via (forall a . T a)

Now, there is no ambiguity regarding a, as both a variables
in the list of derived classes were bound in the same place.

It might feel strange visually to see a variable being used
before its binding site (assuming one reads code from left to
right). However, this is not unprecedented within Haskell,
as this is also legal:

f=g+hwhereg=1,h=2

In this example, we have another scenario where things are
bound (g and h) after their use sites. In this sense, the via
keyword is continuing a rich tradition pioneered by where
clauses.

One alternative idea (which was briefly considered) was
to put the via type before the derived classes so as to avoid

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

this “zigzagging” scoping. However, this would introduce
additional ambiguities. Imagine one were to take the example

deriving Z via X Y
and convert it to a form in which the via type came first:
deriving via X Y Z

Should this be parsed as (X Y) Z, or X (Y Z)? It’s not clear
visually, so this choice would force programmers to write
additional parentheses.

4 More Use Cases

We have already seen in Section 2 how Deriving Via facili-
tates greater code reuse in the context of QuickCheck. This
is far from the only domain where Deriving Via proves to
be a natural fit, however. In fact, there are so many of these
domains, there would be enough to fill pages upon pages!

Unfortunately, we do not have enough space to document
all of these use cases, so in this section, we present a cross-
section of scenarios in which Deriving Via can capture in-
teresting patterns and allow programmers to abstract over
them in a convenient way.

4.1 Asymptotic Improvements with Ease

A widely used feature of type classes is their ability to give
default implementations for their methods if a programmer
leaves them off. One example of this can be found in the
Applicative class. The main workhorse of Applicative is
the (<x>) method, but on occasion, it is more convenient to
use the (<x) or (*>) methods, which sequence their actions
but discard the result of one of their arguments:

class Functor f => Applicative f where
pure :: a->f a
(xx>) :: f(@a->b) >fa->fb
(<x) : fa->fb->fa
(<x) = 1liftA2 (\Na _ > a)
(x»>») :: fa->fb->fb
(*>) = 1iftA2 (\ _ b -> b)

As shown here, (<*) and (*>) have default implementations
in terms of 1iftA2. This works for any Applicative, butis not
as efficient as it could be in some cases. For some instances
of Applicative, we can actually implement these methods
in O(1) time instead of using 1iftA2, which can often run in
superlinear time. One such Applicative is the function type

(=>):
instance Applicative ((->) r) where
pure = const
(<x>) fgx=1Ffx(gx)
f<x_=f°f
_*>g=g
Note that we had to explicitly define (<x) and (*>), as the
default implementations would not have been as efficient.

Baldur Blondal, Andres Loh, and Ryan Scott

But (->) is not the only type for which this trick works—
it also works for any data type that is isomorphic to (->)
r (for some r). These function-like types are characterized
by the Representable type class:

class Functor f => Representable f where
type Rep
index :: f a -> (Rep f -> a)
tabulate :: (Rep f ->a) > f a

This is a good deal more abstract than (->) r, so it can be
helpful to see how Representable works for (->) r itself:

instance Representable ((->) r) where
type Rep ((->) r) =r
index f = f
tabulate f = f

With Representable, we can codify the Applicative shortcut
for (<x) and (*>) with a suitable newtype:

newtype WrapRep f a = WrapRep (f a)
deriving (Functor, Representable)

instance Representable f
=> Applicative (WrapRep f) where
pure = tabulate . pure
f <*> g = tabulate (index f <*> index g)

fax_=f

-*>g=8g

Now, instead of having to manually override (<*) and (*>)
to get the desired performance, one can accomplish this in a
more straightforward fashion by using Deriving Via:

newtype IntConsumer a = IntConsumer (Int -> a)
deriving (Functor, Representable)
deriving Applicative via (WrapRep IntConsumer)

Not only does this save code in the long run, but it also gives
a name to the optimization being used, which allows it to be
documented, exported from a library, and thereby easier to
spot “in the wild” for other programmers.

4.2 Making Defaults more Flexible

In the previous section, we saw an example of how rely-
ing too much on a type class’s default implementations can
backfire. This is an unfortunately common trend with type
classes in general: many classes try to pick one-size-fits-all
defaults that do not work well in certain scenarios, but be-
cause Haskell allows specifying only one default per method,
if the provided default does not work for a programmer’s use
case, then she is forced to write her own implementations
by hand.

In this section, we continue the trend of generalizing de-
faults by looking at another language extension that Deriving
Via can substitute for: default signatures. Default signatures
(a slight generalization of default implementations) can elim-
inate large classes of boilerplate, but they too are limited

Deriving Via

by the one-default-per-method restriction. Here, we demon-
strate how one can scrap uses of default signatures in favor
of Deriving Via and show how Deriving Via can overcome
the limitations of default signatures.

The typical use case for default signatures is when one
has a class method that has a frequently used default im-
plementation at a constrained type. For instance, consider a
Pretty class with a method pPrint for pretty-printing data:

class Pretty a where

pPrint :: a -> Doc

Coming up with Pretty instances for the vast majority of
data types is repetitive and tedious, so a common pattern is
to abstract away this tedium using generic programming li-
braries, such as those found in GHC.Generics [11] or generics-
sop [4]. For example, using GHC.Generics, we can define

genericPPrint ::
(Generic a, GPretty (Rep a)) => a -> Doc

The details of how Generic, GPretty, and Rep work are not
important to understanding the example. What is important
is to note that we cannot just add

pPrint = genericPPrint

as a conventional default implementation to the Pretty class,
because it does not typecheck due to the extra constraints.

Before the advent of default signatures, one had to work
around this by defining pPrint to be genericPPrint in every
Pretty instance, as in the examples below:

instance Pretty Bool where
pPrint = genericPPrint

instance Pretty a => Pretty (Maybe a) where
pPrint = genericPPrint

To avoid this repetition, default signatures allow one to pro-
vide a default implementation of a class method using addi-
tional constraints on the method’s type. For example:

class Pretty a where
pPrint :: a -> Doc
default pPrint ::
(Generic a, GPretty (Rep a)) => a -> Doc
pPrint = genericPPrint

Now, if any instances of Pretty are given without an explicit
definition of pPrint, the default implementation is used. For
this to typecheck, the data type a used in the instance must
satisfy the constraints (Generic a, GPretty (Rep a)). Thus,
we can reduce the instances above to just

instance Pretty Bool
instance Pretty a => Pretty (Maybe a)

Although default signatures remove the need for many
occurrences of boilerplate code, it also retains a significant
limitation of Haskell default methods: every class method can
have at most one default implementation. As a result, default
signatures effectively endorse one default implementation as

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

the canonical one. But in many scenarios, there is far more
than just one way to do something. Our pPrint example is
no exception. Instead of genericPPrint, one might want to:

e leverage a Show-based default implementation instead
of a Generic-based one,

e use a different generic programming library, such as
generics-sop, instead of GHC.Generics, or

e use a tweaked version of genericPPrint that displays
extra debugging information.

All of these are perfectly reasonable choices a programmer
might want to make, but alas, GHC lets type classes bless
each method with only one default.

Fortunately, Deriving Via provides a convenient way of
encoding default implementations with the ability to toggle
between different choices: newtypes! For instance, we can
codify two different approaches to implementing pPrint as
follows:

newtype GenericPPrint a = GenericPPrint a

instance (Generic a, GPretty (Rep a))
=> Pretty (GenericPPrint a) where
pPrint (GenericPPrint x) = genericPPrint x

newtype ShowPPrint a = ShowPPrint a

instance Show a => Pretty (ShowPPrint a) where
pPrint (ShowPPrint x) = stringToDoc (show x)

With these newtypes in hand, choosing between them is as
simple as changing a single type:

deriving Pretty via (GenericPPrint DataTypel)
deriving Pretty via (ShowPPrint DataType2)

We have seen how Deriving Via makes it quite simple to
give names to particular defaults, and how toggling between
defaults is a matter of choosing a name. In light of this, we
believe that many current uses of default signatures ought
to be removed entirely and replaced with the Deriving Via-
based idiom presented in this section. This avoids the need
to bless one particular default and forces programmers to
consider which default is best suited to their use case, instead
of blindly trusting the type class’s blessed default to always
do the right thing.

An additional advantage is that it allows decoupling the
definition of such defaults from the site of the class definition.
Hence, if a package author is hesitant to add a default be-
cause that might incur an unwanted additional dependency,
nothing is lost, and the default can simply be added in a
separate package.

4.3 Deriving via Isomorphisms

All of the examples presented thus far in the paper rely on
deriving through data types that have the same runtime
representation as the original data type. In the following,
however, we point out that—perhaps surprisingly—we can
also derive through data types that are isomorphic, not just

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

representationally equal. To accomplish this feat, we rely on
techniques from generic programming.

Let us go back to QuickCheck (as in Section 2) once more
and consider the data type

data Track = Track Title Duration

for which we would like to define an Arbitrary instance. Let
us further assume that we already have Arbitrary instances
for both Title and Duration.

The QuickCheck library defines an instance for pairs, so
we could generate values of type (Title, Duration), and in
essence, this is exactly what we want. But unfortunately,
the two types are not inter-Coercible, even though they are
isomorphic’.

However, we can exploit the isomorphism and still get an
instance for free, and the technique we apply is quite widely
applicable in similar situations. As a first step, we declare a
newtype to capture that one type is isomorphic to another:

newtype SameRepAs a b = SameRepAs a

We call this type SameRepAs, because it denotes that a and b
have inter-Coercible generic representations, i.e., that

Coercible (Rep a ()) (Rep b ()

holds. Furthermore, the type SameRepAs a b is representa-
tionally equal to a, which implies that a and SameRepAs a b
are inter-Coercible.

We now witness the isomorphism between the two types
via their generic representations: if they have inter-Coercible
generic representations, we can transform back and forth
between the two types using the from and to methods of
the Generic class from GHC.Generics [11]. We can use this to
define a suitable Arbitrary instance for SameRepAs:

instance
(Generic a, Generic b
, Coercible (Rep a ()) (Rep b (), Arbitrary b
) => Arbitrary (a ‘SameRepAs‘ b) where
arbitrary = SameRepAs
where
coerceViaRep ::
coerceViaRep =
to . (coerce ::

coerceViaRep <$> arbitrary
b -> a

Rep b () -=> Rep a () . from

Here, we first use arbitrary to give us a generator of type Gen
b, then coerce this via the generic representations into an
arbitrary value of type Gen a.

Finally, we can use the following deriving declarations
for Track to obtain the desired Arbitrary instance:

deriving Generic
deriving Arbitrary
via (Track ‘SameRepAs‘ (String, Duration))

SIsomorphic in the sense that we can define a function from Track to
(Title, Duration) and vice versa. Depending on the class we want to derive,
sometimes an even weaker relationship between the types is sufficient, but
we focus on the case of isomorphism here for reasons of space.

Baldur Blondal, Andres Loh, and Ryan Scott

With this technique, we can significantly expand the “equiv-
alence classes” of data types that can be used when picking
suitable types to derive through.

4.4 Retrofitting Superclasses

On occasion, the need arises to retrofit an existing type class
with a superclass, such as when Monad was changed to have
Applicative as a superclass (which in turn has Functor as a
superclass).

One disadvantage of such a change is that if the primary
goal is to define the Monad instance for a type, one now has to
write two additional instances, for Functor and Applicative,
even though these instances are actually determined by the
Monad instance.

With Deriving Via, we can capture this fact as a newtype,
thereby making the process of defining such instances much
less tedious:

newtype FromMonad m a = FromMonad (m a)
deriving Monad

instance Monad m => Functor (FromMonad m) where
fmap = 1iftM

instance Monad m => Applicative (FromMonad m) where
pure = return
(<*>) = ap

Now, if we have a data type with a Monad instance, we can
simply derive the corresponding Functor and Applicative
instances by referring to FromMonad:

data Stream a b = Done b | Yield a (Stream a b)
deriving (Functor, Applicative)
via (FromMonad (Stream a))
instance Monad (Stream a) where
return = Done
Yield a k »= f
Done b >»= f

Yield a (k »= f)
fb

One potentially problematic aspect remains. Another pro-
posal [12] has been put forth (but has not been implemented,
as of now) to remove the return method from the Monad class
and make it a synonym for pure from Applicative. The ar-
gument is that return is redundant, given that pure does the
same thing with a more general type signature. All other
prior discussion about the proposal aside, it should be noted
that removing return from the Monad class would prevent
FromMonad from working, as then Monad instances would not
have any way to define pure. ©

4.5 Avoiding Orphan Instances

Not only can Deriving Via quickly procure class instances,
in some cases, it can eliminate the need for certain instances

® A similar, yet somewhat weaker, argument applies to suggested changes to
relax the constraints of 1iftM and ap to merely Applicative and to change
their definitions to be identical to fmap and (<*>), respectively.

Deriving Via

altogether. Haskell programmers often want to avoid or-
phan instances: instances defined in a separate module from
both the type class and data types being used. Sometimes,
however, it is quite tempting to reach for orphan instances,
as in the following example adapted from a blog post by
Gonzalez [10]:

newtype Plugin = Plugin (IO (String -> I0 ()))
deriving Semigroup

In order for this derived Semigroup instance to typecheck,
there must be a Semigroup instance for 10 available. Suppose
for a moment that there was no such instance for 10. How
could one work around this issue?

e One could patch the base library to add the instance
for 10. But given base’s slow release cycle, it would be
a while before one could actually use this instance.

e Write an orphan instance for 10. This works, but is
undesirable, as now anyone who uses Plugin must
incur a possibly unwanted orphan instance.

Luckily, Deriving Via presents a more convenient third
option: re-use a Semigroup instance from another data type.
Recall the Ap data type from Section 1.2 that lets us define
a Semigroup instance by lifting through an Applicative in-
stance. As luck would have it, 10 already has an Applicative
instance, so we can derive the desired Semigroup instance for
Plugin like so:

newtype Plugin = Plugin (IO (String -> I0 ()))
deriving Semigroup
via (Ap I0 (String -> Ap I0 ()))

Note that we have to use Ap twice in the via type, correspond-
ing to the two occurences of I0 in the Plugin type. This is
possible because Ap I0 has the same representation as I0,
and it is also necessary if we want to completely bypass the
need for a Semigroup instance for I0: Via the inner Ap 10 ()
and the existing instance

instance Semigroup b => Semigroup (a -> b)

we first obtain a Semigroup instance for String -> 10 (),
which we then, via the outer Ap I0 application, lift to I0
(String -> 10 ()) and therefore the Plugin type.

5 Related Ideas

We have demonstrated in the previous section that Deriving
Via is an extremely versatile technique, and can be used to
tackle a wide variety of problems. Deriving Via also bears
a resemblance to other distinct language features which ad-
dress similar issues, so in this section, we present an overview
of their similarities and differences.

5.1 Code Reuse in Dependent Type Theory

Diehl et al. present a dependent type theory which permits
zero-cost conversions between indexed and non-indexed
variants of data types [5], much in the same vein as Coercible.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

However, these conversions must be explicitly constructed
with combinators, whereas Coercible-based casts are built
automatically by GHC’s constraint solver. Therefore, while
Diehl et al. allow conversions between more data types than
Deriving Via does, it also introduces some amount of boiler-
plate than Deriving Via avoids.

5.2 Explicit Dictionary Passing

The power and flexibility of Deriving Via is largely due to
GHC'’s ability to take a class method of a particular type and
massage it into a method of a different type. This process is
almost completely abstracted away from the user, however.
A user only needs to specify the types involved, and GHC
will handle the rest behind the scenes.

An alternative approach, which would put more power
into the hands of the programmer, is to permit the ability to
explicitly construct and pass the normally implicit dictionary
arguments corresponding to type class instances [6]. Unlike
in Deriving Via, where going between class instances is a
process that is carefully guided by the compiler, permitting
explicit dictionary arguments would allow users to actually
coerce concrete instance values and pass them around as
first-class values. In this sense, explicit dictionary arguments
could be thought of as a further generalization of the tech-
nique that Deriving Via uses.

However, explicit dictionary arguments are a considerable
extension of the language and its type system, and we feel
that to be too large a hammer for the nail we are trying to hit.
Deriving Via works by means of a simple desugaring of code
with some light typechecking on top, which makes it much
simpler to describe and implement. Finally, the problem that
explicit dictionaries aim to solve—resolving ambiguity in
implicit arguments—almost never arises in Deriving Via, as
the programmer must specify all the types involved in the
process.

6 Current Status

We have implemented Deriving Via within GHC. Our im-
plementation also interacts well with other GHC features
that were not covered in this paper, such as kind polymor-
phism [13], StandaloneDeriving, and type classes with asso-
ciated type families [2]. However, there are still challenges
remaining, which we describe in this section.

6.1 Quality of Error Messages

The nice thing about deriving is that when it works, it tends
to work extremely well. When it doesn’t work, however,
it can be challenging to formulate an error message that
adequately explains what went wrong. The fundamental
issue is that error messages resulting from uses of deriving
are usually rooted in generated code, and pointing to code
that the user did not write in error messages can lead to a
confusing debugging experience.

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

Fortunately, we have found in our experience that the
quality of Deriving Via-related error messages is overall on
the positive side. GHC has already invested significant effort
into making type errors involving Coercible to be easily
digestible by programmers, so Deriving Via benefits from
this work. For instance, if one inadvertently tries to derive
through a type that is not inter-Coercible with the original
data type, such as in the following example:

newtype UhOh = UhOh Char deriving Ord via Int
Then GHC will tell you exactly that, in plain language:

« Couldn’t match representation of type Char with that of Int
arising from the coercion of the method compare
from type ‘Int -> Int -> Ordering’
to type ‘UhOh -> UhOh -> Ordering’

That is not to say that every error message is this straight-
forward. There are some scenarios that produce less-than-
ideal errors, such as this:

newtype Foo a = Foo (Maybe a) deriving Ord via a

« Occurs check: cannot construct the infinite type: a ~ Maybe a
arising from the coercion of the method ‘compare’
from type ‘a -> a -> Ordering’
to type ‘Foo a -> Foo a -> Ordering’

The real problem is that a and Maybe a do not have the
same representation at runtime, but the error does not make
this obvious. It is possible that one could add an ad hoc check
for this class of programs, but there are likely many more
tricky corner cases lurking around the corner given that one
can put anything after via.

We do not propose a solution to this problem here, but
instead note that issues with Deriving Via error quality are
ultimately issues with coerce error quality, given that the
error messages are a result of coerce failing to typecheck.
It is likely that investing more effort into making coerce’s
error messages easier to understand would benefit Deriving
Via as well.

6.2 Multi-Parameter Type Classes

GHC extends Haskell by permitting type classes with more
than one parameter. Multi-parameter type classes are ex-
tremely common in modern Haskell, to the point where we
assumed the existence of them in Section 3.1.1 without fur-
ther mention. However, multi-parameter type classes pose
an intriguing design question when combined with Deriv-
ing Via and StandaloneDeriving, another GHC feature that
allows one to write deriving declarations independently of
a data type.

For example, one can write the following instance using
StandaloneDeriving:

class Triple a b ¢ where
triple :: (a, b, ¢)

Baldur Blondal, Andres Loh, and Ryan Scott

instance Triple () () () where
triple = (O, O, O)

newtype A = A ()

newtype B = B ()

newtype C = C ()

deriving via () instance Triple A B C

However, the code this generates is somewhat surprising.
Instead of reusing the Triple () () () instance in the de-
rived instance, GHC will attempt to reuse an instance for
the type Triple A B (). The reason is that, by convention,
StandaloneDeriving will only ever coerce through the last
argument of a class. That is because the standalone instance
above would be the same as if a user had written:

newtype C = C () deriving (Triple A B) via ()

This consistency is perhaps a bit limiting in this context,
where we have multiple arguments to C that one could “derive
through”. But it is not clear how GHC would figure out which
of these arguments to C should be derived through, as there
seven different combinations to choose from! It is possible
that another syntax would need to be devised to allow users
to specify which arguments should be coerced to avoid this
ambiguity.

7 Conclusions

In this paper, we have introduced the Deriving Via language
extension, explained how it is implemented, and shown a
wide variety of use cases. We believe that Deriving Via has
the potential to dramatically change the way we write in-
stances, as it encourages giving names to recurring patterns
and reusing them where needed. It is our feeling that most
instance declarations that occur in the wild can actually be
derived by using a pattern that deserves to be known and
named, and that instances defined manually should become
an anti-pattern in all but some rare situations.

Acknowledgements

We would like to thank Richard Eisenberg for his feedback
on Section 3.3, as well as the first author’s former colleagues
at Standard Chartered Bank for their feedback. We also thank
the anonymous reviewers and Simon Peyton Jones for their
many insightful suggestions.

References

[1] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones, and
Stephanie Weirich. 2014. Safe Zero-cost Coercions for Haskell. In
Proceedings of the 19th ACM SIGPLAN International Conference on
Functional Programming (ICFP °14). ACM, New York, NY, USA, 189-
202. https://doi.org/10.1145/2628136.2628141

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones.
2005. Associated Type Synonyms. In Proceedings of the Tenth ACM
SIGPLAN International Conference on Functional Programming (ICFP
’05). ACM, New York, NY, USA, 241-253. https://doi.org/10.1145/
1086365.1086397

[2

—

https://doi.org/10.1145/2628136.2628141
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/1086365.1086397

Deriving Via

[3] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight

—

Tool for Random Testing of Haskell Programs. In Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’00). ACM, New York, NY, USA, 268-279. https:
//doi.org/10.1145/351240.351266

Edsko de Vries and Andres Loh. 2014. True Sums of Products. In
Proceedings of the 10th ACM SIGPLAN Workshop on Generic Pro-
gramming (WGP ’14). ACM, New York, NY, USA, 83-94. https:
//doi.org/10.1145/2633628.2633634

Larry Diehl, Denis Firsov, and Aaron Stump. 2018. Generic Zero-cost
Reuse for Dependent Types. Proc. ACM Program. Lang. 2, ICFP, Article
104 (July 2018), 30 pages. https://doi.org/10.1145/3236799

Atze Dijkstra and S. Doaitse Swierstra. 2005. Making implicit pa-
rameters explicit. Technical Report UU-CS-2005-032. Department
of Information and Computing Sciences, Utrecht University. http:
/Iwww.cs.uu.nl/research/techreps/repo/CS-2005/2005-032.pdf
Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed.
2016. Visible Type Application. In Proceedings of the 25th European
Symposium on Programming Languages and Systems - Volume 9632.
Springer-Verlag New York, Inc., New York, NY, USA, 229-254. https:
//doi.org/10.1007/978-3-662-49498-1_10

(8]

[9

—

[10]

(1]

[12]

[13]

Haskell *18, September 27-28, 2018, St. Louis, MO, USA

Conal Elliott. 2009. applicative-numbers: Applicative-based numeric
instances. https://hackage.haskell.org/package/applicative-numbers
Jeremy Gibbons and Bruno c. d. s. Oliveira. 2009. The Essence of
the Iterator Pattern. 7. Funct. Program. 19, 3-4 (July 2009), 377-402.
https://doi.org/10.1017/S0956796809007291

Gabriel Gonzalez. 2014. Equational reasoning at scale. http://www.
haskellforall.com/2014/07/equational-reasoning-at-scale.html

José Pedro Magalhaes, Atze Dijkstra, Johan Jeuring, and Andres Loh.
2010. A Generic Deriving Mechanism for Haskell. In Proceedings of
the Third ACM Haskell Symposium on Haskell (Haskell ’10). ACM, New
York, NY, USA, 37-48. https://doi.org/10.1145/1863523.1863529
Herbert V. Riedel and David Luposchainsky. 2015. Monad of no return
Proposal (MRP): Moving return out of Monad. https://mail.haskell.
org/pipermail/libraries/2015-September/026121.html

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhaes. 2012. Giving Haskell
a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation (TLDI °12). ACM, New
York, NY, USA, 53-66. https://doi.org/10.1145/2103786.2103795

https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/2633628.2633634
https://doi.org/10.1145/3236799
http://www.cs.uu.nl/research/techreps/repo/CS-2005/2005-032.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-2005/2005-032.pdf
https://doi.org/10.1007/978-3-662-49498-1_10
https://doi.org/10.1007/978-3-662-49498-1_10
https://hackage.haskell.org/package/applicative-numbers
https://doi.org/10.1017/S0956796809007291
http://www.haskellforall.com/2014/07/equational-reasoning-at-scale.html
http://www.haskellforall.com/2014/07/equational-reasoning-at-scale.html
https://doi.org/10.1145/1863523.1863529
https://mail.haskell.org/pipermail/libraries/2015-September/026121.html
https://mail.haskell.org/pipermail/libraries/2015-September/026121.html
https://doi.org/10.1145/2103786.2103795

	Abstract
	1 Introduction
	1.1 Deriving
	1.2 Introducing Deriving Via
	1.3 Contributions and Structure of the Paper

	2 Case Study: QuickCheck
	2.1 Composition
	2.2 Adding New Modifiers
	2.3 Parameterized Modifiers

	3 Typechecking and Translation
	3.1 Well-Typed Uses of Deriving Via
	3.2 Code Generation
	3.3 Type Variable Scoping

	4 More Use Cases
	4.1 Asymptotic Improvements with Ease
	4.2 Making Defaults more Flexible
	4.3 Deriving via Isomorphisms
	4.4 Retrofitting Superclasses
	4.5 Avoiding Orphan Instances

	5 Related Ideas
	5.1 Code Reuse in Dependent Type Theory
	5.2 Explicit Dictionary Passing

	6 Current Status
	6.1 Quality of Error Messages
	6.2 Multi-Parameter Type Classes

	7 Conclusions
	References

