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I Where nondeterminism hurts

Continuous integration

Same commit, different results
amitaibu opened this issue on Nov 19, 2012 - 2 comments

“ amitaibu commented on Nov 19, 2012

| have a build that was su&cessful, but after "rebuilding” it fails.

Success VS Fail -- so | assume it's related to the environment?




I Where nondeterminism hurts

Parallel workflows

ab c:

all: abc

@for n in 1 2 ; do \

done

echo $@-$$n && sleep 1

)

b\
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I Entrypoints
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= Haskel

main :: I0 ()
main = do
Parallel .mapM_ putStrLn [1..10]




I Entrypoints =

= Haskel

main :: I0 ()

main = do
Parallel .mapM_ putStrLn [1..10]
-- Already nondeterministic!
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I DetIO

newtype DetIO a = MkDetIO (IO a)
-- Expose only deterministic API calls

getLine :: DetIO String
putStrLn :: String -> DetIO ()
-- etc.

Key idea: Only expose deterministic operations that can
be composed in a deterministic fashion



I DetlIO .

newtype DetIO a = MkDetIO (IO a)
-- Expose only deterministic API calls

getLine :: DetIO String
putStrLn :: String -> DetIO ()
-- etc.

main :: DetIO ()
main = do
X <- getlLine
putStrLn x




I Parallelism

*detflow uses the filesystem for shared-memory
parallelism
*Should this be allowed?

readFile :: FilePath -> DetIO String
writeFile :: FilePath -> String
-> DetIO String




I Parallelism

Thread 1

do writeFile “foo.txt”
“Hello, World”

Thread 2

do foo <- readFile “foo.txt”
if foo == “Hello, World”
then ...
else ...




I Parallelism

Thread 1

do writeFile “foo.txt”
“Hello, World”

Thread 2

do foo <- readFile “foo.txt”
if foo == “Hello, World”
then ...
else ...
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system filepaths



I Solution: permissions

* Every thread holds separate permissions on
system filepaths

/abcdef/ghijkl/mnopqr

Thread 1 R 0.5 R 0.5 RW 1.0

Thread 2 R 0.5 R 0.5



I Parallelism, revisited

data Perm -- (R/RW) + path + fraction

forkWPerms :: [PathPerm] -> DetIO a
-> DetIO (Thread a)
joinThread :: Thread a -> DetIO ()

readFile and writeFile must respect the
permissions in a thread’s local state



I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT

th2 <- forkWPerms [R “/b”]
computation?

joinThread t1

joinThread t2
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pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a

thl <- forkWPerms [R “/a”]
computationT

-- Parent has R 0.5 on /a

th2 <- forkWPerms [R “/a”]
computation?

joinThread t1

joinThread t2
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pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1

joinThread t2




I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1
-- Parent has R 0.75 on /a
joinThread t2




I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1
-- Parent has R 0.75 on /a
joinThread t2
-- Parent has R 1.0 on /a




I More detflow

* Replace nondeterministic 10 operations with
deterministic alternatives
* Reading system time
*putStrlLn

* Full lattice of permissions, and formalization of
permission checkout (see paper)



I detflow

Static Low
determinism overall
enforcement overhead




I system calls

main =

system ::

main ::

String -> DetIO ()

DetIO ()
system “gcc foo.c -o foo”




I system calls

system :: String -> DetIO ()

main :: DetIO ()
mailn = system “gcc foo.c -o foo”

- How can we make shelling out to arbitrary programs (not written
in DetIO0) deterministic?



system calls

system :: String -> DetIO ()

main :: DetIO ()
mailn = system “gcc foo.c -o foo”

- How can we make shelling out to arbitrary programs (not written
in DetIO0) deterministic?

 Answer: run them in a deterministic runtime.
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I libdet

libdet must intercept potential sources of
nondeterminism at runtime.




I libdet

Reading from “banned”
directories

* /dev/urandom
* /proc



I libdet

Reading from “banned” Solution

directories

* /dev/urandom * Intercept calls to fopen() (with
* /proc LD_PRELOAD), error if they read

anything blacklisted



I libdet

Uncontrolled concurrency

* e.g.,, with pthreads



I libdet

Uncontrolled concurrency Solution

* e.g., with pthreads * Intercept calls to
pthread_create() (with
LD_PRELOAD) to run everything
sequentially



I libdet

Nondeterministic OS
properties

* e.g., reading addresses
returned by mmap ()



I libdet

Nondeterministic OS Solution
properties
* e.g., reading addresses  Disable address-space layout

returned by mmap () randomization (ASLR)



I detflow




Case studies

* Ran a deterministic version of make against SPLASH2
benchmarks
* Performance is essentially identical to that of GNU make
 Ported various bioinformatics scripts to deflow and measured
parallel speedup
 Overall performance overhead for determinism enforcement is
less than 1%
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Bioinformatics apps, -
parallel speedup
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I Future work

* Reach closer to catching all sources of
nondeterminism in runtime

- Dynamic (at-runtime) checkout of permissions

* Make more programs feasible to determinize



detflow development:

https://github.com/iu-parfunc/detmonad

Any questions?



“Hello, World!” -
throughput
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