Monadic Composition
for Deterministic, Parallel Batch

Processing
Ryan Scott' Omar Navarro Lelja?
Ryan Newton’ Joe Devietti?

'Indiana University
2University of Pennsylvania

< rgscott@indiana.edu
() github.com/RyanGlScott

I Nondeterminism

p

Arguments
>

Ideal Program Outputfiles

Input files

>

I Nondeterminism

Arguments 4 Output files vL
“Nondeterministic| output fites vz
Input files Program >

>

I Nondeterminism

Arguments 4 Output files vL
“Nondeterministic| output fites vz
Input files Program >

>

I Nondeterminism

Arguments 4 Output files vL
“Nondeterministic| output fites vz
Input files Program >

>

I Nondeterminism

Arguments / Output files vL
“Nondeterministic| output fites vz
>
Input files
ol >

I Where nondeterminism hurts

I Where nondeterminism hurts

Continuous integration

Same commit, different results
amitaibu opened this issue on Nov 19, 2012 - 2 comments

“ amitaibu commented on Nov 19, 2012

| have a build that was su&cessful, but after "rebuilding” it fails.

Success VS Fail -- so | assume it's related to the environment?

I Where nondeterminism hurts

Parallel workflows

ab c:

all: abc

@for n in 1 2 ; do \

done

echo $@-$$n && sleep 1

)

b\

Serial execution | Parallel execution

ake

O 0O OO0 L LV &~
I
N =N =N =3

Parallel execution

ke -32

(qV)

= — (N —™ (N — (N
| | | I | I

“ M ©. O .0 O O

Serial execution

ake

= — (N ™ (N — (N
| | | I | I
“ M ©. O .0 O O

Parallel execution

ke -32

(qV)

E — — (N AN — (N
| | | I | I

A OO0 @ O O

Serial execution

ake

= — (N ™ (N — (N
| | | I | I
“ M ©. O .0 O O

Parallel execution

ke -32

(qV)

E — — (N AN — (N
| | | I | I

A M. O O O O

Serial execution

ake

= — (N ™ (N — (N
| | | I | I
“ M ©. O .0 O O

I detflow

I detflow

I Entrypoints

ain :: I0 ()

I Entrypoints =

= Haskel

main :: I0 ()
main = do
Parallel .mapM_ putStrLn [1..10]

I Entrypoints =

= Haskel

main :: I0 ()

main = do
Parallel .mapM_ putStrLn [1..10]
-- Already nondeterministic!

I DetlIO .

newtype DetIO a = MkDetIO (IO a)

I DetlIO .

newtype DetIO a = MkDetIO (IO a)

-- Expose only deterministic API calls
getLine :: DetIO String

putStrLn :: String -> DetIO ()

-- etc.

I DetIO

newtype DetIO a = MkDetIO (IO a)
-- Expose only deterministic API calls

getLine :: DetIO String
putStrLn :: String -> DetIO ()
-- etc.

Key idea: Only expose deterministic operations that can
be composed in a deterministic fashion

I DetlIO .

newtype DetIO a = MkDetIO (IO a)
-- Expose only deterministic API calls

getLine :: DetIO String
putStrLn :: String -> DetIO ()
-- etc.

main :: DetIO ()
main = do
X <- getlLine
putStrLn x

I Parallelism

*detflow uses the filesystem for shared-memory
parallelism
*Should this be allowed?

readFile :: FilePath -> DetIO String
writeFile :: FilePath -> String
-> DetIO String

I Parallelism

Thread 1

do writeFile “foo.txt”
“Hello, World”

Thread 2

do foo <- readFile “foo.txt”
if foo == “Hello, World”
then ...
else ...

I Parallelism

Thread 1

do writeFile “foo.txt”
“Hello, World”

Thread 2

do foo <- readFile “foo.txt”
if foo == “Hello, World”
then ...
else ...

I Solution: permissions

* Every thread holds separate permissions on
system filepaths

I Solution: permissions

* Every thread holds separate permissions on
system filepaths

/abcdef/ghijkl/mnopqr

Thread 1 R 0.5 R 0.5 RW 1.0

Thread 2 R 0.5 R 0.5

I Parallelism, revisited

data Perm -- (R/RW) + path + fraction

forkWPerms :: [PathPerm] -> DetIO a
-> DetIO (Thread a)
joinThread :: Thread a -> DetIO ()

readFile and writeFile must respect the
permissions in a thread’s local state

I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT

th2 <- forkWPerms [R “/b”]
computation?

joinThread t1

joinThread t2

I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a

thl <- forkWPerms [R “/a”]
computationT

-- Parent has R 0.5 on /a

th2 <- forkWPerms [R “/a”]
computation?

joinThread t1

joinThread t2

I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1

joinThread t2

I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1
-- Parent has R 0.75 on /a
joinThread t2

I Permissions checkout

pgm :: DetIO ()
pgm :: do -- Assume parent starts with R 1.0 on /a
thl <- forkWPerms [R “/a”]
computationT
-- Parent has R 0.5 on /a
th2 <- forkWPerms [R “/a”]
computation?
-- Parent has R 0.25 on /a
joinThread t1
-- Parent has R 0.75 on /a
joinThread t2
-- Parent has R 1.0 on /a

I More detflow

* Replace nondeterministic 10 operations with
deterministic alternatives
* Reading system time
*putStrlLn

* Full lattice of permissions, and formalization of
permission checkout (see paper)

I detflow

Static Low
determinism overall
enforcement overhead

I system calls

main =

system ::

main ::

String -> DetIO ()

DetIO ()
system “gcc foo.c -o foo”

I system calls

system :: String -> DetIO ()

main :: DetIO ()
mailn = system “gcc foo.c -o foo”

- How can we make shelling out to arbitrary programs (not written
in DetIO0) deterministic?

system calls

system :: String -> DetIO ()

main :: DetIO ()
mailn = system “gcc foo.c -o foo”

- How can we make shelling out to arbitrary programs (not written
in DetIO0) deterministic?

 Answer: run them in a deterministic runtime.

Dynamic
runtime
. y
sandboxing
p

I libdet

I libdet

libdet must intercept potential sources of
nondeterminism at runtime.

I libdet

Reading from “banned”
directories

* /dev/urandom
* /proc

I libdet

Reading from “banned” Solution

directories

* /dev/urandom * Intercept calls to fopen() (with
* /proc LD_PRELOAD), error if they read

anything blacklisted

I libdet

Uncontrolled concurrency

* e.g.,, with pthreads

I libdet

Uncontrolled concurrency Solution

* e.g., with pthreads * Intercept calls to
pthread_create() (with
LD_PRELOAD) to run everything
sequentially

I libdet

Nondeterministic OS
properties

* e.g., reading addresses
returned by mmap ()

I libdet

Nondeterministic OS Solution
properties
* e.g., reading addresses Disable address-space layout

returned by mmap () randomization (ASLR)

I detflow

Case studies

* Ran a deterministic version of make against SPLASH2
benchmarks
* Performance is essentially identical to that of GNU make
 Ported various bioinformatics scripts to deflow and measured
parallel speedup
 Overall performance overhead for determinism enforcement is
less than 1%

Selected SPLASH2
benchmarks

barnes

raytrace
24 " ll'lllllllll'lllllllll'llllllll‘ 6 " "'l""'""l"'"""l""""'l'""""l""'""l'""""l""""
9
a2 DetlO-Det DetlO-Det eniue
“ GNU make e . GNU make emfums :
§ 2 DetlO-NonDet s - < DetlO-NonDet s
O]
(V)] [75]
j= =
() Q
£ =
5 5
O b
s s
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Threads Threads

(Lower is better)

Bioinformatics apps, -
parallel speedup

16 llllllll'lllllllll'lllllllll'lllllllll'lllllllll'lllllllll'lllllllll'llllllllla

bwa-Det

bwa-NonDet e
14 clustal-Det e
clustal-NonDet =iy
12 mothur-Det e
mothur-NonDet s
raxml-Det e
10 raxml-NonDet e

Parallel speedup over sequential NonDet
(0]

6
4
2
0
0 2 4 6 8 10 12 14 16
Threads

(Higher is better)

I Future work

* Reach closer to catching all sources of
nondeterminism in runtime

- Dynamic (at-runtime) checkout of permissions

* Make more programs feasible to determinize

detflow development:

https://github.com/iu-parfunc/detmonad

Any questions?

“Hello, World!” -
throughput

1X107 lll‘g

Det|O-Det em@me :
DetlO-NonDet emfums .
Native e=jfs -

1x10° E

100000

Print line, throughput per second

0 2 4 5) 8 10 12 14 16
Threads

(Higher is better)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

