
Ryan Scott, Galois, Inc.
Mike Dodds, Galois, Inc.
Ivan Perez, KBR @ NASA Ames Research Center
Alwyn Goodloe, NASA Langley Research Center
Robert Dockins, Amazon

Trustworthy Runtime Verification via Bisimulation
(Experience Report)

© Galois, Inc.22

We wrote a compiler verification tool for
proving the equivalence of high-level, stream
code and low-level, translated C code.

© Galois, Inc.33

We wrote a compiler verification tool for
proving the equivalence of high-level, stream
code and low-level, translated C code.
Both the stream language (Copilot) and the compiler (Copilot-C99)
existed before we started this project (CopilotVerifier).

© Galois, Inc.44

We wrote a compiler verification tool for
proving the equivalence of high-level, stream
code and low-level, translated C code.
Both the stream language (Copilot) and the compiler (Copilot-C99)
existed before we started this project (CopilotVerifier).

We did this with a very limited time and engineering budget.

© Galois, Inc.55

We wrote a compiler verification tool for
proving the equivalence of high-level, stream
code and low-level, translated C code.
Both the stream language (Copilot) and the compiler (Copilot-C99)
existed before we started this project (CopilotVerifier).

We did this with a very limited time and engineering budget.

Our secret: building on off-the-shelf formal methods, tools and
libraries.

© Galois, Inc.66

CopilotVerifier uses bisimulation to prove
program equivalence.

© Galois, Inc.77

CopilotVerifier uses bisimulation to prove
program equivalence.
Specifically, we show that the possible states of a stream program and
the possible states of a C program are in bisimulation with each other.

© Galois, Inc.88

CopilotVerifier uses bisimulation to prove
program equivalence.
Specifically, we show that the possible states of a stream program and
the possible states of a C program are in bisimulation with each other.

In effect, we show that the programs’ observable behaviors coincide.

© Galois, Inc.99

CopilotVerifier uses bisimulation to prove
program equivalence.
Specifically, we show that the possible states of a stream program and
the possible states of a C program are in bisimulation with each other.

In effect, we show that the programs’ observable behaviors coincide.

We reduce the key steps of a bisimulation proof to a set of goals that
can be discharged with an SMT solver.

© Galois, Inc.1010

Results

We developed a fully working version of CopilotVerifier in just under
one year with two engineers.

© Galois, Inc.1111

Results

We developed a fully working version of CopilotVerifier in just under
one year with two engineers.

Plan to use CopilotVerifier as part of NASA missions in the future.

© Galois, Inc.1212

Results

We developed a fully working version of CopilotVerifier in just under
one year with two engineers.

Plan to use CopilotVerifier as part of NASA missions in the future.

CopilotVerifier has already caught 10 bugs in Copilot.

© Galois, Inc.1313

Results

We developed a fully working version of CopilotVerifier in just under
one year with two engineers.

Plan to use CopilotVerifier as part of NASA missions in the future.

CopilotVerifier has already caught 10 bugs in Copilot.

CopilotVerifier can verify all of the programs in the Copilot test suite,
including an implementation of the Well-Clear Violation algorithm used
in unmanned aircraft.

Copilot: a framework for writing monitors
using runtime verification

© Galois, Inc.1515

Copilot

Copilot programs are written in a stream-based DSL in Haskell.

© Galois, Inc.1616

Copilot

Copilot programs are written in a stream-based DSL in Haskell.

Designed for monitoring systems at runtime using runtime verification.

© Galois, Inc.1717

Copilot

Copilot programs are written in a stream-based DSL in Haskell.

Designed for monitoring systems at runtime using runtime verification.

Originally developed by Galois and National Institute of Aerospace in
2010.

© Galois, Inc.1818

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

© Galois, Inc.1919

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

© Galois, Inc.2020

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
 trigger "even"
 (isEven fibs) [arg fibs]
 ...

© Galois, Inc.2121

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
 trigger "even"
 (isEven fibs) [arg fibs]
 ...

Copilot-C99

© Galois, Inc.2222

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
 trigger "even"
 (isEven fibs) [arg fibs]
 ...

Copilot-C99

int fibs[2] = {1, 1};
size_t fibs_idx = 0;

bool even_guard(void) {
 return (fibs[fibs_idx % 2] % 2) == 0;
}

void step(void) {
 if (even_guard()) {
 even(fibs[fibs_idx % 2]);
 }
 ...
 fibs[idx] = fibs_gen();
 fibs_idx = (fibs_idx + 1) % 2;
}

© Galois, Inc.2323

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
 trigger "even"
 (isEven fibs) [arg fibs]
 ...

Copilot-C99

int fibs[2] = {1, 1};
size_t fibs_idx = 0;

bool even_guard(void) {
 return (fibs[fibs_idx % 2] % 2) == 0;
}

void step(void) {
 if (even_guard()) {
 even(fibs[fibs_idx % 2]);
 }
 ...
 fibs[idx] = fibs_gen();
 fibs_idx = (fibs_idx + 1) % 2;
}

© Galois, Inc.2424

Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
 trigger "even"
 (isEven fibs) [arg fibs]
 ...

int fibs[2] = {1, 1};
size_t fibs_idx = 0;

bool even_guard(void) {
 return (fibs[fibs_idx % 2] % 2) == 0;
}

void step(void) {
 if (even_guard()) {
 even(fibs[fibs_idx % 2]);
 }
 ...
 fibs[idx] = fibs_gen();
 fibs_idx = (fibs_idx + 1) % 2;
}

≈?

How do we know that Copilot-generated
C code is trustworthy?

© Galois, Inc.2626

Option A: Audit the code by hand

© Galois, Inc.2727

Option A: Audit the code by hand

…but this is error-prone.

Free-to-use photo by cottonbro studio from Pexels

https://www.pexels.com/photo/a-man-in-gray-knitted-sweater-wearing-eyeglasses-while-looking-afar-6209563/

© Galois, Inc.2828

Option B: Formally verify the Copilot compiler

© Galois, Inc.2929

Option B: Formally verify the Copilot compiler

…but this would require more time and budget than we had.

© Galois, Inc.3030

Option C: Translation validation

© Galois, Inc.3131

Option C: Translation validation

…i.e., construct a proof of equivalence between the source and target
programs each time the compiler runs.¹

¹Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation.

© Galois, Inc.3232

Option C: Translation validation

…i.e., construct a proof of equivalence between the source and target
programs each time the compiler runs.¹

This is a weaker result than full compiler verification, but one that is
more readily adaptable to existing compilers.

¹Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation.

© Galois, Inc.3333

Option C: Translation validation

…i.e., construct a proof of equivalence between the source and target
programs each time the compiler runs.¹

This is a weaker result than full compiler verification, but one that is
more readily adaptable to existing compilers.

¹Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation.

CopilotVerifier overview

© Galois, Inc.3535

CopilotSpec.hs

© Galois, Inc.3636

CopilotSpec.hs

copilot-monitor.c

LLVM bitcode

Copilot-to-C
compiler

Clang

© Galois, Inc.3737

What4

CopilotSpec.hs

copilot-monitor.c

Copilot semantics

LLVM semantics

LLVM bitcode Crucible

Copilot-to-C
compiler

Clang

CopilotTheorem

© Galois, Inc.3838

What4

CopilotSpec.hs

copilot-monitor.c

Copilot semantics

LLVM semantics

LLVM bitcode Crucible

Copilot-to-C
compiler

Clang

CopilotTheorem

Prove
equivalence

between
programs

SMT solver

© Galois, Inc.3939

CopilotTheorem

LLVM semantics

Copilot semantics

LLVM bitcode

copilot-monitor.c

CopilotSpec.hs

Prove
equivalence

between
programs

SMT solver

What4

Crucible

Copilot-to-C
compiler

Clang

SMT solver

© Galois, Inc.4040

CopilotTheorem

LLVM semantics

Copilot semantics

LLVM bitcode

copilot-monitor.c

CopilotSpec.hs

Prove
equivalence

between
programs

SMT solver

What4

Crucible

Copilot-to-C
compiler

Clang

SMT solver

© Galois, Inc.4141

CopilotTheorem

LLVM semantics

Copilot semantics

LLVM bitcode

copilot-monitor.c

CopilotSpec.hs

Prove
equivalence

between
programs

SMT solver

What4

Crucible

Copilot-to-C
compiler

Clang

SMT solver

© Galois, Inc.4242

SMT solver

What4

CopilotSpec.hs

copilot-monitor.c

Copilot semantics

LLVM semantics

LLVM bitcode Crucible

Copilot-to-C
compiler

Clang

CopilotTheorem

Prove
equivalence

between
programs

© Galois, Inc.4343

Proving programs equivalent via bisimulation

We want to prove that a Copilot stream program and its corresponding
C program are extensionally equal, i.e., at every time step:

● The same set of trigger functions are called in both programs with
the same arguments

● The stream program crashes if and only if the C program crashes

© Galois, Inc.4444

Proving programs equivalent via bisimulation

We prove extensional equality by:
1. Representing each program

as a labelled transition
system (LTS)

© Galois, Inc.4545

Proving programs equivalent via bisimulation

We prove extensional equality by:
1. Representing each program

as a labelled transition
system (LTS)

2. Generating verification
conditions to show the two
LTSs are extensionally equal
at a given time step

Goal 1: even trigger fires in both programs

(declare-fun s0_idx () (_ BitVec 64))
(define-fun x!0 () (_ BitVec 64) (bvadd s0_idx (_ bv4 64)))
(define-fun x!1 () (_ BitVec 64) (bvurem x!0 (_ bv5 64)))
(define-fun x!2 () (_ BitVec 64) (bvmul (_ bv4 64) x!1))
...

Goal 2: ...

...

Goal 3: …

...

© Galois, Inc.4646

Proving programs equivalent via bisimulation

We prove extensional equality by:
1. Representing each program

as a labelled transition
system (LTS)

2. Generating verification
conditions to show the two
LTSs are extensionally equal
at a given time step

3. Check verification conditions
with SMT solver

Goal 1: even trigger fires in both programs

(declare-fun s0_idx () (_ BitVec 64))
(define-fun x!0 () (_ BitVec 64) (bvadd s0_idx (_ bv4 64)))
(define-fun x!1 () (_ BitVec 64) (bvurem x!0 (_ bv5 64)))
(define-fun x!2 () (_ BitVec 64) (bvmul (_ bv4 64) x!1))
...

Goal 2: ...

...

Goal 3: …

...

Z3 logo © Microsoft under the MIT License

https://upload.wikimedia.org/wikipedia/commons/0/01/Z3_Theorem_Prover_Logo_329x329.jpg

© Galois, Inc.4747

More in the paper
● Handling floating-point operations (e.g., sin/cos) with SMT solvers

● How CopilotVerifier presents proof evidence for certification
○ Certification is a human-driven process, so we must produce

evidence suitable for human auditors

© Galois, Inc.4848

Next steps
● Copilot has been released as Class D, open-source software at

NASA

● Plan to use CopilotVerifier as part of safety cases for Class C
NASA missions involving Copilot monitors

© Galois, Inc.4949

Next steps
● Copilot has been released as Class D, open-source software at

NASA

● Plan to use CopilotVerifier as part of safety cases for Class C
NASA missions involving Copilot monitors

● CopilotVerifier source: https://github.com/GaloisInc/copilot-verifier
Copilot source: https://github.com/Copilot-Language/copilot

https://github.com/GaloisInc/copilot-verifier
https://github.com/Copilot-Language/copilot

© Galois, Inc.5050

Next steps
● Copilot has been released as Class D, open-source software at

NASA

● Plan to use CopilotVerifier as part of safety cases for Class C
NASA missions involving Copilot monitors

● CopilotVerifier source: https://github.com/GaloisInc/copilot-verifier
Copilot source: https://github.com/Copilot-Language/copilot

Thank you!

https://github.com/GaloisInc/copilot-verifier
https://github.com/Copilot-Language/copilot

Backup slides

© Galois, Inc.5252

Handling floating-point ops with SMT solvers
● CopilotVerifier treats all floating-point operations (arithmetic,

sin/cos, etc.) as uninterpreted functions at the SMT level
● This works, but it is brittle: the order of floating-point operations

must be the exact same in both the stream and C programs
● For instance, these two stream expressions are not equivalent:

constantF (150.0 / 255.0) constantF 150.0 / constantF 255.0

constantF :: Float -> Stream Float

0.5882353f 150.0f / 255.0f

