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We wrote a compiler verification tool for 
proving the equivalence of high-level, stream 
code and low-level, translated C code.
Both the stream language (Copilot) and the compiler (Copilot-C99) 
existed before we started this project (CopilotVerifier).

We did this with a very limited time and engineering budget.

Our secret: building on off-the-shelf formal methods, tools and 
libraries.
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CopilotVerifier uses bisimulation to prove 
program equivalence.
Specifically, we show that the possible states of a stream program and 
the possible states of a C program are in bisimulation with each other.

In effect, we show that the programs’ observable behaviors coincide.

We reduce the key steps of a bisimulation proof to a set of goals that 
can be discharged with an SMT solver.
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Results

We developed a fully working version of CopilotVerifier in just under 
one year with two engineers.

Plan to use CopilotVerifier as part of NASA missions in the future.

CopilotVerifier has already caught 10 bugs in Copilot.

CopilotVerifier can verify all of the programs in the Copilot test suite, 
including an implementation of the Well-Clear Violation algorithm used 
in unmanned aircraft.



Copilot: a framework for writing monitors 
using runtime verification
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Copilot

Copilot programs are written in a stream-based DSL in Haskell.
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Copilot

Copilot programs are written in a stream-based DSL in Haskell.

Designed for monitoring systems at runtime using runtime verification.

Originally developed by Galois and National Institute of Aerospace in 
2010.
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Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)
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Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
  trigger "even"
    (isEven fibs) [arg fibs]
  ...
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int fibs[2] = {1, 1};
size_t fibs_idx = 0;

bool even_guard(void) {
  return (fibs[fibs_idx % 2] % 2) == 0;
}

void step(void) {
  if (even_guard()) {
    even(fibs[fibs_idx % 2]);
  }
  ...
  fibs[idx] = fibs_gen();
  fibs_idx = (fibs_idx + 1) % 2;
}
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Copilot example
fibs :: Stream Int
fibs = [1, 1] ++ (fibs + drop 1 fibs)

isEven :: Stream Int -> Stream Bool
isEven n = (n `mod` 2) == 0

spec :: Spec
spec = do
  trigger "even"
    (isEven fibs) [arg fibs]
  ...

int fibs[2] = {1, 1};
size_t fibs_idx = 0;

bool even_guard(void) {
  return (fibs[fibs_idx % 2] % 2) == 0;
}

void step(void) {
  if (even_guard()) {
    even(fibs[fibs_idx % 2]);
  }
  ...
  fibs[idx] = fibs_gen();
  fibs_idx = (fibs_idx + 1) % 2;
}

≈?



How do we know that Copilot-generated 
C code is trustworthy?
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Option A: Audit the code by hand
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Option A: Audit the code by hand

…but this is error-prone.

Free-to-use photo by cottonbro studio from Pexels

https://www.pexels.com/photo/a-man-in-gray-knitted-sweater-wearing-eyeglasses-while-looking-afar-6209563/
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Option B: Formally verify the Copilot compiler
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Option B: Formally verify the Copilot compiler

…but this would require more time and budget than we had.
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Option C: Translation validation



© Galois, Inc.3131

Option C: Translation validation

…i.e., construct a proof of equivalence between the source and target 
programs each time the compiler runs.¹

¹Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation validation.
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This is a weaker result than full compiler verification, but one that is 
more readily adaptable to existing compilers.
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CopilotVerifier overview
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CopilotSpec.hs
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SMT solver
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Proving programs equivalent via bisimulation

We want to prove that a Copilot stream program and its corresponding 
C program are extensionally equal, i.e., at every time step:

● The same set of trigger functions are called in both programs with 
the same arguments

● The stream program crashes if and only if the C program crashes
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Proving programs equivalent via bisimulation

We prove extensional equality by:
1. Representing each program 

as a labelled transition 
system (LTS)

2. Generating verification 
conditions to show the two 
LTSs are extensionally equal 
at a given time step

Goal 1: even trigger fires in both programs

(declare-fun s0_idx () (_ BitVec 64))
(define-fun x!0 () (_ BitVec 64) (bvadd s0_idx (_ bv4 64)))
(define-fun x!1 () (_ BitVec 64) (bvurem x!0 (_ bv5 64)))
(define-fun x!2 () (_ BitVec 64) (bvmul (_ bv4 64) x!1))
...

Goal 2: ...

...

Goal 3: …

...
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Proving programs equivalent via bisimulation

We prove extensional equality by:
1. Representing each program 

as a labelled transition 
system (LTS)

2. Generating verification 
conditions to show the two 
LTSs are extensionally equal 
at a given time step

3. Check verification conditions 
with SMT solver

Goal 1: even trigger fires in both programs

(declare-fun s0_idx () (_ BitVec 64))
(define-fun x!0 () (_ BitVec 64) (bvadd s0_idx (_ bv4 64)))
(define-fun x!1 () (_ BitVec 64) (bvurem x!0 (_ bv5 64)))
(define-fun x!2 () (_ BitVec 64) (bvmul (_ bv4 64) x!1))
...

Goal 2: ...

...

Goal 3: …

...

Z3 logo © Microsoft under the MIT License

https://upload.wikimedia.org/wikipedia/commons/0/01/Z3_Theorem_Prover_Logo_329x329.jpg
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More in the paper
● Handling floating-point operations (e.g., sin/cos) with SMT solvers

● How CopilotVerifier presents proof evidence for certification
○ Certification is a human-driven process, so we must produce 

evidence suitable for human auditors
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● Copilot has been released as Class D, open-source software at 
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● Plan to use CopilotVerifier as part of safety cases for Class C 
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Next steps
● Copilot has been released as Class D, open-source software at 

NASA

● Plan to use CopilotVerifier as part of safety cases for Class C 
NASA missions involving Copilot monitors

● CopilotVerifier source: https://github.com/GaloisInc/copilot-verifier
Copilot source: https://github.com/Copilot-Language/copilot

Thank you!

https://github.com/GaloisInc/copilot-verifier
https://github.com/Copilot-Language/copilot


Backup slides
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Handling floating-point ops with SMT solvers
● CopilotVerifier treats all floating-point operations (arithmetic, 

sin/cos, etc.) as uninterpreted functions at the SMT level
● This works, but it is brittle: the order of floating-point operations 

must be the exact same in both the stream and C programs
● For instance, these two stream expressions are not equivalent:

constantF (150.0 / 255.0) constantF 150.0 / constantF 255.0

constantF :: Float -> Stream Float

0.5882353f 150.0f / 255.0f


